乘法分配律教案

时间:2024-07-27 17:05:30 教案 我要投稿

乘法分配律教案

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编整理的乘法分配律教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

乘法分配律教案

乘法分配律教案1

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。

  3、发挥学生主体作用,体验探究学习的快乐。 教学重点:指导学生探索乘法的分配律。 教学难点:乘法分配律的应用。

  教学准备:课件、口算题、例题、练习题等。 教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。 教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用? 生:能够使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎样不如刚才的快啊? 生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不一样? 生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎样明白的?你明白什么是乘法分配律吗? 生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。

  师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?

  (学生计算,并汇报。)

  ……

  师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的.?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)

乘法分配律教案2

  教学目标

  1.使学生理解的意义。

  2.掌握的应用。

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力。

  教学重点

  的意义及应用。

  教学难点

  的反应用。

  教具学具准备

  口算卡片、投影仪。

  教学步骤

  一、铺垫孕伏

  1. 口算。

  (27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

  2. 用简便方法计算。(说明根据什么简算的)

  25×63×4

  3. 师生比赛,看谁算得又对又快。

  20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容。(板书课题:).

  2.教学例6:

  (1)出示例6:演示课件出示例6 下载

  (2)引导学生观察每组的两个算式。

  (3)教师提问:从上面的例子你发现了什么规律?

  (4)学生明确:每组中的两个算式都可以用等号连接。

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的意义。

  (6)反馈练习:按题要求,请你说出一个等式。(投影出示)

  (__+__)×__=__+__×

  教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘。

  其次是等号右边两个加数分别同一个数相乘再把两个积相加。

  最后是等号左右两边的两个算式相等。

  3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做。

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c

  使学生明确:有的.题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便。

  5.教学例7:演示课件出示例7 下载

  (1)出示例7:102×43

  启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?

  引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便。

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据,可以把原式改写成什么形式?

  根据学生的回答教师板书:9×37+9×63

  =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和。

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数。

  ③另外两个不同的因数,是两个能凑成整十、整百、整千的加数。

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便。现在你们会了吗?

  三、巩固发展 演示课件出示练习 下载

  1. 练习十四第1题。

  根据运算定律在□里填上适当的数。

  (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数。

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×8 24×5+24×8

  (3)20×(l+15) 0×17+20×15

  (4)(40+28)×5 40×5+ 28

  (5)(10×125)×8 10×8+125×8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42+29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

  (2)与a×8-b×8相等的式于是( )

  ①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

  5.练习十四第4题,投影出示。

  一辆凤凰牌自行车420元,一辆永久牌自行车405元。现在各买三辆。买凤凰车和永久车一共用多少元?

  四、课堂小结

  今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加。希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便。

  五、布置作业

  练习十四第3题。

  用简便方法计算下面各题。

  (80+8)×25 35×37+65×37

  32×(200+3) 38×29+38

乘法分配律教案3

  教学目标

  1.引导学生探究和理解乘法分配律。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:借助实际问题体会、认识乘法乘法律。

  教学难点:用乘法交换律和结合律算式。

  预设过程

  一、引入

  1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

  2、理解题意

  二、探新

  1、学生独自列式

  2、小组交流想法

  3、汇报:根据学生的回答板书

  25×(4+9)=25×4+25×9=325

  25×(4+9)=25×4+25×9

  指名学生说出每一步表示的意义

  (4+9)×25=4×25+9×25=325

  (4+9)×25=4×25+9×25

  4、改题:如果改为买45副,你又可以怎样算?

  45×(4+9)=45×4+45×9

  (4+9)×45=4×45+9×45

  5、观察:请你们仔细观察上面这几题,

  6、你们发现了什么?

  相同点:左边都是两个数的和与一个数相乘,

  右边都是两个数和这个数相乘再相加。

  不同点:算式左边和右边有什么不同?

  联系:算式左边和算式右边有什么联系?

  6、举例:这样的算式你能再举出一些吗?

  7、概括:你们能把上面的规律概括成一句话吗?

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  你能用字母表示吗?(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  8、质疑:还有什么问题?

  三、巩固

  1、做一做

  判断并说明理由

  2、第5题:下面哪些算式运用了乘法分配律

  3、第6题

  103×1220×5524×20525×24

  四、:你们还有什么问题?

  五、布置作业:

  1、口算

  2、作业本

  3、寻找生活中乘法分配律的例子。

  板书设计

  作业设计:

  课堂作业本P15

  口算训练P16

  教学反思

  课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的`顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

  在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

  生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

  生2:是呀,一个数好像是公共财产,都是它们共有的。

  这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

乘法分配律教案4

  本课题教时数:25本教时为第20教时备课日期11月15日

  教学目标

  1.使学生认识乘法口算应用了乘法分配律,并能说明是怎样应用乘法分配律口算乘法。

  2.使学生初步理解和学会应用乘法分配律进行简便计算的方法,能对一些乘法算式用简便算法正确计算,进一步培养学生采用合理、灵活的方法进行乘法计算的能力。

  教学重难点

  使学生初步理解和学会应用乘法分配律进行简便计算的方法。

  教学准备

  投影片

  教学过程设计

  教学内容

  师生活动

  备注

一、复习旧知

  二、学习新课

  三、巩固练习

  四、布置作业

  1.复习乘法分配律

  (1)什么是乘法分配律?你能用字母式子表示吗?

  (2)根据乘法分配律在括号里写出算式。

  (40+7)×6=()

  4×(25+70)=()

  36×3+24×3=()

  5×72+5×28=()

  2.揭示课题

  上面四道题,哪边的计算适用于口算?

  应用乘法分配律,可以使一些计算用口算,比较简便。这节课我们就学习乘法分配律的'应用,使一些计算简便。(板书课题)

  1.乘法分配律在口算中的应用

  (1)口算23×4

  让学生说说口算的过程。指出:我们学过的乘法口算的方法,应用了什么运算定律?怎样运用的?

  (2)口算:

  32×316×448×2

  指名学生讲是怎样算的?

  2.学习例6

  (1)出示计算第1题103×32

  (2)小组讨论:看怎样计算比较简便?

  (3)学生尝试着进行计算,指名学生板演。

  (4)请板演的同学说说是怎样计算的?应用了什么运算定律?

  (5)用简便方法计算:304×22401×16

  2.学习例6第2题46×12+12×54

  (1)以学习小组为单位,讨论:看怎样计算比较简便?

  (2)学生尝试着进行计算。指名学生进行板演。

  (3)请板演的同学讲一讲计算的方法。

  (4)用简便方法计算:38×7+62×7

  56×29+56×31

  3.学习“试一试”

  (1)出示35×9+35

  (2)学生独立完成,完成后请同学讲讲计算方法。

  (3)口算:

  48×9+4826×19+26

  37×49+3753×99+53

  1.做“练一练”第2题。

  指名3人板演,其余学生做在练习本上。

  集体订正。让学生说说每一题是怎样想的?

  2.这节课我们学习了什么内容?在什

  么情况下我们用乘法的分配律使计算简便?你能举几个例子吗?

  练习十八第5题第二、三行

乘法分配律教案5

  教学目标

  1.使学生理解乘法分配律的好处.

  2.掌握乘法分配律的应用.

  3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.

  教学重点

  乘法分配律的好处及应用.

  教学难点

  乘法分配律的反应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1. 口算.

  (27+73)×8 40×9+40×1 14×

  (10+2) 10×6+10×4

  2. 用简便方法计算.(说明根据什么简算的) 25×63×4

  3. 师生比赛,看谁算得又对又快. 20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:乘法分配律).

  2.教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6下载 (2)引导学生观察每组的两个算式.

  (3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的好处.

  (6)反馈练习:按题要求,请你说出一个等式.(投影出示) (__+__)×__=__+__×

  教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘. 其次是等号右边两个加数分别同一个数相乘再把两个积相加. 最后是等号左右两边的两个算式相等.

  3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c 使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

  5.教学例7:演示课件“乘法分配律”出示例7下载 (1)出示例7:102×43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律能够使计算简便.

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,能够把原式改写成什么形式? 根据学生的回答教师板书:9×37+9×63 =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数

  ③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便。此刻你们会了吗?

  三、巩固发展

  演示课件“乘法分配律”出示练习 下载

  1. 练习十四第1题.

  根据运算定律在□里填上适当的.数. (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数.

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

  3.把相等的算式用等号连接起来: (1)32×48+32×5232×(48+52)

  (2)(24+8)×824×5+24×8

  (3)20×(l+15)0×17+20×15

  (4)(40+28)×540×5+ 28

  (5)(10×125)×810×8+125×8

  (6)4×(30+25)4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选取题:

  (1)28×(42+29)与下方的()相等

  ①28×42+28×29②(28+42)×(28+29)③28×42×29 (2)与a×8-b×8相等的式于是()

  ①(a+b)×8②(a-b)×(8+8)③(a-b)×8 (3)与(10+8+9)×5相等的式子是()

  ①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9 5.练习十四第4题,投影出示.

  一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?

  四、课堂小结

  这天我们学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

  五、布置作业

  练习十四第3题.

  用简便方法计算下方各题.

  (80+8)×2535×37+65×37

  32×(200+3)38×29+38

乘法分配律教案6

  教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教学过程:

  一、复习

  教师出示式题:

  1.(35+65)×372.35×37+65×37

  3.85×(174+26)4.85×174+85×26

  5.(80+8)×256.80×25+8×25

  7.32×(200+3)8.32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学算第1题和第3题,第4、5、6组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做得快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的`大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例7。

  (1)教师出示例题:计算102×43。

  教师:这道题是一个三位数乘一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “上面计算中的第二步根据是什么?”(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  (2)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两个乘积的和。

  “仔细看一看这道题里的两个乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系上面的复习题,想一想这道题怎样做才能使计算简便呢?”(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师:这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先,要计算的是两个乘积的和;两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  结语:过去我们做口算乘法时,实际上已经应用了乘法分配律。让学生自读第65页的相关内容。

  三、课堂练习

  做练习十四的题目。

  1.第2题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”

  2.第3题,先让学生自己计算。核对时让学生回答:

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教师先把算式38×29+38写在黑板上,再引导学生想:从表面上看这道题不是两个乘积的和,但是题中的乘法有因数38,后面所加的数恰好也是38,由此我们可以想到如果所加的数是38乘一个数,那时我们就可以用乘法分配律了。提问:

  “想一想怎样使所加的38变成38与一个数相乘,而且乘积仍是38?”教师同时板书:38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

乘法分配律教案7

  教学目标:

  1、使学生在探究的过程中,能自主发觉乘法安排律,并能用字母表示。

  2、通过视察、分析、比较,培育学生的分析、推理和概括实力。

  3、发挥学生主体作用,体验探究学习的欢乐。

  教学重点:

  指导学生探究乘法的安排律。 教学难点:

  乘法安排律的应用。

  教学打算:

  课件、口算题、例题、练习题等。 教学策略:

  本节课的学习我主要实行自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、英勇地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。

  谁来说一说,驾驭乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速推断。(生口算。)

  设计意图:这样开宗明义的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。

  二、探究发觉

  1、猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。 师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。 师:为什么这样算哪?

  生:我是依据乘法安排律算的。 师:你是怎么知道的?你知道什么是乘法安排律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学实力很强,但对乘法安排律的内涵还不了解,这节课我们就来探究乘法安排律好吗?(板书课题:乘法安排律。)

  2、验证。

  师:同学们看两个数的.和同一个数相乘,假如可以这样计算的话,那可简便多了。究竟能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发觉。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。) 小结:通过验证,这道题的确可以这样算,那是不是全部的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是全部的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发觉,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们视察黑板上的几组等式,看看你们得到的结论是什么? 3、结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。 师:同学们真聪慧,你们知道吗?这就是乘法的第三个运算定律“乘法安排律”。(出示课件,学生齐读安排律的意义。)

  师:假如老师用a、b、c表示两个加数和乘数,你能用字母表示乘法安排律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法安排律,的确可以使一些计算简便。接下来,我们利用乘法安排律计算几道题。 设计意图:在探究乘法安排律的过程中,让学生经验了一次严密的科学发觉过程:猜想——验证——结论。为学生的可持续学习奠定了基础。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法安排律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法安排律,看到乘法安排律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和驾驭乘法安排律,并能正确地进行表述。让学生参加学问的形成过程,培育学生概括、分析、推理的实力,并渗透从特别到一般,再由一般到特别的相识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经验和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发觉的过程,是在详细的情境中整个身心投入到学习活动,去经验和体验学问形成的过程,也是身心多方面须要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特别的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最终由学生通过视察、探讨、发觉、归纳总结出乘法安排律。整个过程中,我不是把规律干脆呈现在学生面前,而是让学生通过自主探究去感悟发觉,使主体性得到了充分发挥。在这个探究过程中,学生经验了一次严密的科学发觉过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注意合作与沟通

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,老师在本课教学中立足通过师生多向互动,特殊是通过学生与学生之间的相互启发与补充,来培育他们的合作意识,实现对“乘法安排律”这一运算定律的主动建构。学生对“乘法安排律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验胜利的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

乘法分配律教案8

  教学内容:

  教科书第69页例6,练习十四的第310题。

  教学目的:

  使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教具准备:

  复习中的题目写在小黑板上。

  教学过程 :

  一、复习。

  教师出示式题:

  1.(35+65)37 2.3537+6537

  3.85(174+26) 4.85174+8526

  5.(80+8)25 6.8025+825

  7.32(200+3) 8.32300+323

  根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

  这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例6。

  (1)教师出示例题,计算937+963。

  教师:这道题是要计算两个乘积的和。

  仔细看一看这道题里的两个乘法计算中的因数有什么特点?

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

  联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

  这是应用了什么运算定律?

  教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的`计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:10243。

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

  板书:10243

  =(100+2)43

  =10043+243

  =4386

  上面计算中的第二步根据是什么?(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

  三、课堂练习

  做练习十四的题目。

  1.第3题,让学生口算。

  2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

  3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

  4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

  5.提前做完的学生做第19*题。

乘法分配律教案9

  教学内容:

  苏教版小学数学第七册P58

  教学目标:

  1、在学生初步掌握乘法分配律的基础上,能应用乘法分配律进行简便计算。

  2、通过计算与比较,发现乘法分配律可以类推到两个数的差与另一个数相乘。

  教学重点、难点:发现乘法分配律可以类推到两个数的差与另一个数相乘。

  教学准备:

  教学情境挂图

  设计理念:

  通过实际题目来理解乘法分配律的意义,在计算、观察以及和乘法对加法的分配律的'比较中,内化乘法对减法的分配律。

  教学步骤

  教师活动

  学生活动

 一、揭示课题

  1、明确要求:这节课我们用乘法分配律的知识来解答一些题目。

  2、板书课题。

  回忆。

  二、复习乘法对加法的分配律

  1、练习五第1题。

  ⑴引导学生观察看图。

  ⑵思考:怎样计算小正方体的个数?

  ⑶指名汇报,并说说这样计算的依据。

  ⑷根据学生的汇报板书。

  2、练习五第2题。

  出示16401

  (30+2)15

  引导学生重点说说算法。

  出示10323

  125(8+16)

  重点引导学生用不同的方法算。

  看图,弄清图意。

  思考。

  列出两种算式进行计算。

  汇报,说出计算的依据,明确乘法分配律的实质。

  练习。

  指名板演。

  集体订正。

  练习。

  指名板演。

  集体订正。

  三、学习乘法对减法的分配律

  1、练习五第3题。

  ⑴出示第3题。

  ⑵你发现了什么?能用自己的话表达出来吗?

  ⑶与刚才我们做的题目有什么不同?

  2、练习五第4题。

  出示:12(40-5)

  3598

  引导学生重点说说第2题的计算方法。

  3、练习五第5题。

  ⑴指名读题。

  ⑵解答第一个问题。

  ⑶解答第二个问题。

  ⑷小结:这一题是乘法分配律在实际生活中的应用。

  分组计算一组题目。

  指名板演。

  观察,交流发现的规律。

  与乘法对加法的分配律进行比较。

  计算。

  指名板演。

  集体订正。

  读题。理解题意。

  练习。反馈

  练习,列出不同的算式。比较。

  四、小结作业

  提问:

  通过这节课的学习,你有什么收获?你的表现怎样呢?

  指名回答,自我评价。

  作业设计:课堂作业:练习五第2、4题中剩下的两题。

  教学反思:

乘法分配律教案10

  设计说明

  教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:

  1.游戏激趣,设置悬念。

  在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。

  2.观察、比较,举例验证猜想。

  在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。

  3.多角度练习,强化认识和理解。

  小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的.延伸。

  课前准备

  教师准备 多媒体课件

  教学过程

  ⊙游戏激趣

  1.比赛热身。

  师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。

  师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。

  (1)9×37+9×63 (2)9×(37+63)

  2.评出胜负。

  师:做完的同学请举手,汇报计算过程。

  师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?

  预设

  生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。

  师:同学们说得非常好,尤其是××,我们就先将他的这个发现命名为××猜想。

  设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。

  ⊙引导探究,发现规律

  1.课件出示例7。

  一共有多少名同学参加了这次植树活动?

  (1)需要知道哪些条件?请在情境图里找一找。(出示情境图)

  (2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)

  (3)小组讨论,尝试用不同的方法解决问题并板书。

  引导各小组汇报解题方法,并说明这样解题的理由。

  解法一 (4+2)×25

  =6×25

  =150(名)

  (4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)

  解法二 4×25+2×25

  =100+50

  =150(名)

  (4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)

  2.观察算式,探究发现。(见课堂活动卡)

  (1)小组合作,讨论探究。

  ①两道算式有什么相同点?

  ②两道算式有什么不同点?

  ③两道算式有什么联系?

乘法分配律教案11

  教学内容:教科书第64页例7,练习十四的第3一10题。

  教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

  教学难点:应用乘法分配律简便计算

  教具准备:将复习中的题目写在小黑板上。

  教学过程:

  一、复习

  教师出示试题:

  1、(35+65)×37

  2、35×37+65×37

  3、85×(174+26)

  4、85×174+85×26

  5、(80+8)×25

  6、80×25+8×25

  7、32×(200+3)

  8、32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的'。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从下面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  教学例7

  (1)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两上乘积的和。

  “仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系下面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:102×43

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从下面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

  板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “下面计算中的第二步根据是什么?”(乘法分配律)。

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  三、课堂练习

  做练习十四的题目。

  1、第3题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”

  2、第4题,先让学生自己计算。核对时让学生回答。

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

  3、第7题,先让学生独立做,然后集体核对,核对的要让学生说一说是怎样做的。当核对“26×3”时,学生说出计算方法后,再让学生说一说计算过程。

  学生发言后,教师说明:26乘以3可以写作(20+6)×3,根据乘法分配律等于20乘以3的积再加6乘以3的积,这实际上是应用了乘法分配律。这就是说,我们过去学过的乘法口算有些应用了乘法分配律。

  这道题中的第7小题应用乘法结合律比较简便,第4、6、8、9题应用乘法分配律比较简便。

  4、第9题和第10题,先让学生独立做,核对时要让学生说出每个算式的意义。

  5、提前做完的学生可以做第9题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:

  (80—30)×110一30×110;

  (80—30—30)×110;

  (80—30×2)×110。

  四、作业

  练习十四的第5、6、8题。

乘法分配律教案12

  教学内容:北师大版四年级下册数学教科书第36页内容,和练习四的第5.6.7.9题。

  教学目标:

  1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  教学重点:充分感知并归纳乘法分配律。

  教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。

  教具准备:多媒体课件

  教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

  活动过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  9×37+9×63

  9×(37+63)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  9×37+9×63=9×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的'猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、

  (1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

  轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

  等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

  在读这句话的时候,哪里应特别注意?

  请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

  1、请大家根据运算定律在下面的_里填上适当的数。5.6.7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

  2、大家请到数学医院,帮老师判断对错。

  3、完成连一连。(给一分钟思考时间,然后抢答)

  4、完成填一填。(这道题我找表现最好的小组来开火车)

  5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

  五、全课小结

  请你选择一个最能代表今天研究成果的。算式,说说我们今天研究了什么?

  请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教案13

  教材简析:

  能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。

  教学目标:

  1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。

  2、让学生学习应用估算的方法判断计算结果的合理性。

  3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。

  教学过程:

  一、讲解学生作业错得较多的题目

  1、99×37+37=37×(□○□)

  指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”

  2、把左右两边相等的算式用线连起来

  11×58+49×11 12×77+8×77

  (12+8)×77 36×25+4×25

  (58+12)×14 27×21+27×29

  27×(21+29) 11×(58+49)

  (36×4)×25 58×14+12

  先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?

  (1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的'。

  (2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。

  二、学习例题

  1、出示例题图

  说说例题的信息和问题,说说相关的数量关系式。

  2、列式并估算等:32×102≈3200(元)

  说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。

  还可以怎么算?(用竖式算)

  3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?

  (加上2件),这2件是多少元呢?总共是多少元?

  怎么把这个过程完整地用算式表达出来呢?

  板书:32×102

  =32×(100+2)

  =32×100+32×2

  =3200+64

  =3264(元)

  指出:利用乘法分配律,我们可以把这类题目进行简便计算。

  学生完成书上的例题剩下部分。

  4、完成试一试:用简便方法计算46×12+54×12

  观察算式特点,并完成简便计算。交流:=(46+54)×12

  =100×12

  =1200

  比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?

  (有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)

  三、完成想想做做

  1、在□里填上合适的数,在○里填上运算符号(题略)

  学生独立完成,再校对。

  2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)

  学生说出口算的过程,体会也是运用了乘法分配律。

  3、读第5、6题,观察数据的特点,说说怎么算才更简便?

  四、探索思考题

  99×99+199○100×100

  观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?

  在交流过程中完成板书

  99×99+199

  =99×99+99×1+100

  =99×(99+1)+100

  =99×100+100×1

  =100×(99+1)

  =100×100

  学生自己尝试完成算式:999×999+1999的探索过程

  发现规律,直接完成算式:9999×9999+19999=( )×( )

  五、布置作业

  p.57第2、4、5、6题

乘法分配律教案14

  教材分析

  乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析

  学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的'基础,本节课注重引导,指点,会收到很好的效果。

  知识与技能:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感态度价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点和难点:

  教学重点:理解并掌握乘法的分配律。

  教学难点:乘法的分配律的推理及运用。

乘法分配律教案15

  教学内容:

  数学四年级上册P48探索与发现(三)乘法分配律

  教学目标:

  1、使学生理解并掌握乘法分配律,并会用字母表示。

  2、能够运用乘法的分配律进行简便计算。

  3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。

  4、培养学生独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学准备:

  多媒体,题单

  教学过程:

  一、创设情境,调动参与。

  师:以往上课只有老师和同学们,今天还有谁来了?

  生:爸爸妈妈

  师:爱爸爸妈妈吗?

  生:爱。

  师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)

  生:我爱爸爸,我爱妈妈。

  师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)

  师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。

  二、新授,根据两种计算方法探索形成等式。

  1、出示例1,学生独立计算,然后上台板演两种不同的方法。

  (市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)

  2、读每种方法的算式,说一说每一步在算什么。

  3、口答。

  4、算式答案一样,用等号连接,写成一个等式。

  5、生读一读等式。

  6、观察这个等式,从等式中你发现了什么?

  7、出示例2。这个组合图形的面积是多少平方厘米?(A长方形:长7厘米,宽5厘米;B长方形:长3厘米,宽5厘米。)

  默读题目,用两种方法计算。

  8、展示学生的算法。

  第一个算式每一步分别在算什么?

  第二个算式每一步分别在算什么?

  这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)X5=7X5+3X5)

  三、观察等式,发现规律。

  1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)

  1、等号左右两边算式有什么相同的地方?有什么不同的地方?

  2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?

  2、先独立思考,然后和四人小组的同学交流你的想法。

  3、汇报。

  (1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)

  (2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的'左边和右边都表示10个5相加是多少,所以结果相同。

  4、根据这些特点,你有什么发现。

  生汇报自己的想法。

  师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)

  你能举出一些有这样规律的例子吗?(“举例”)

  5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。

  6、学生汇报。

  生口答,师板书学生的两个例子。

  还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)

  看来这个规律是普遍存在的,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)

  读一读乘法分配律。

  刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。

  四、得出结论,揭示课题。

  用字母表示。

  师:如果用a,b,c三个字母代替数字,你能表示出乘法分配律吗?

  学生口答:(a+b)xc=axc+bxc

  这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。

  师:a和b都与哪个数相乘了?(C),C就是a和b共同的乘数。

  五、运用。

  师:运用乘法分配律,我们来练一练。

  1、判断下面各题。

  (25+8)x4=25x4+8x4

  (10+5)x18=10x18+5

  6x(a+b)=6xa+axb

  生口答,错在哪儿?

  2、运用乘法分配律填一填。

  师:我们来运用乘法分配律填一填。

  课件出示:(10+7)x6=()x6+()x6

  8x(125+9)=8x()+8x()

  7x48+7x52=()x(+)

  学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。

  3、计算。

  出示练习题:(40+4)X25 34X72+34X28

  第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。

  第二题:展示算法。

  为什么大多数同学都使用乘法分配律来计算了?

  小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。

  六、课堂小结

  师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?

  生谈谈自己的收获。

  师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。

  七、回归课本,翻书阅读,完成课堂作业。

  今天我们学习的内容在数学书48页和49页,同学们翻书仔细看一看。看完后在课堂本上完成今天的课堂作业49页,练一练2题的第1列和第2列

《乘法分配律教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【乘法分配律教案】相关文章:

《乘法分配律》教案09-04

乘法分配律教学反思04-21

《乘法分配律》教学反思03-14

四年级乘法分配律教案01-15

小学四年级数学乘法分配律教案06-05

(优选)小学四年级数学乘法分配律教案06-05

小学四年级数学教案:乘法分配律的应用06-05

小学乘法教案07-09

小学的乘法教案06-24

乘法分配律教案

  在教学工作者实际的教学活动中,总不可避免地需要编写教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编整理的乘法分配律教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

乘法分配律教案

乘法分配律教案1

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。

  3、发挥学生主体作用,体验探究学习的快乐。 教学重点:指导学生探索乘法的分配律。 教学难点:乘法分配律的应用。

  教学准备:课件、口算题、例题、练习题等。 教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。 教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用? 生:能够使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎样不如刚才的快啊? 生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不一样? 生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎样明白的?你明白什么是乘法分配律吗? 生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。

  师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?

  (学生计算,并汇报。)

  ……

  师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的.?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)

乘法分配律教案2

  教学目标

  1.使学生理解的意义。

  2.掌握的应用。

  3.通过观察、分析、比较,培养学生的分析、推理和概括能力。

  教学重点

  的意义及应用。

  教学难点

  的反应用。

  教具学具准备

  口算卡片、投影仪。

  教学步骤

  一、铺垫孕伏

  1. 口算。

  (27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

  2. 用简便方法计算。(说明根据什么简算的)

  25×63×4

  3. 师生比赛,看谁算得又对又快。

  20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容。(板书课题:).

  2.教学例6:

  (1)出示例6:演示课件出示例6 下载

  (2)引导学生观察每组的两个算式。

  (3)教师提问:从上面的例子你发现了什么规律?

  (4)学生明确:每组中的两个算式都可以用等号连接。

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的意义。

  (6)反馈练习:按题要求,请你说出一个等式。(投影出示)

  (__+__)×__=__+__×

  教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘。

  其次是等号右边两个加数分别同一个数相乘再把两个积相加。

  最后是等号左右两边的两个算式相等。

  3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做。

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c

  使学生明确:有的.题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便。

  5.教学例7:演示课件出示例7 下载

  (1)出示例7:102×43

  启发学生想:能否把算式改成的形式,然后应用运算定律进行简算?

  引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用可以使计算简便。

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据,可以把原式改写成什么形式?

  根据学生的回答教师板书:9×37+9×63

  =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和。

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数。

  ③另外两个不同的因数,是两个能凑成整十、整百、整千的加数。

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的使计算简便。现在你们会了吗?

  三、巩固发展 演示课件出示练习 下载

  1. 练习十四第1题。

  根据运算定律在□里填上适当的数。

  (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数。

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来:

  (1)32×48+32×52 32×(48+52)

  (2)(24+8)×8 24×5+24×8

  (3)20×(l+15) 0×17+20×15

  (4)(40+28)×5 40×5+ 28

  (5)(10×125)×8 10×8+125×8

  (6)4×(30+25) 4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选择题:

  (1)28×(42+29)与下面的( )相等

  ①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

  (2)与a×8-b×8相等的式于是( )

  ①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是( )

  ①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

  5.练习十四第4题,投影出示。

  一辆凤凰牌自行车420元,一辆永久牌自行车405元。现在各买三辆。买凤凰车和永久车一共用多少元?

  四、课堂小结

  今天我们学习了,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加。希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便。

  五、布置作业

  练习十四第3题。

  用简便方法计算下面各题。

  (80+8)×25 35×37+65×37

  32×(200+3) 38×29+38

乘法分配律教案3

  教学目标

  1.引导学生探究和理解乘法分配律。

  2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  教学重点:借助实际问题体会、认识乘法乘法律。

  教学难点:用乘法交换律和结合律算式。

  预设过程

  一、引入

  1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

  2、理解题意

  二、探新

  1、学生独自列式

  2、小组交流想法

  3、汇报:根据学生的回答板书

  25×(4+9)=25×4+25×9=325

  25×(4+9)=25×4+25×9

  指名学生说出每一步表示的意义

  (4+9)×25=4×25+9×25=325

  (4+9)×25=4×25+9×25

  4、改题:如果改为买45副,你又可以怎样算?

  45×(4+9)=45×4+45×9

  (4+9)×45=4×45+9×45

  5、观察:请你们仔细观察上面这几题,

  6、你们发现了什么?

  相同点:左边都是两个数的和与一个数相乘,

  右边都是两个数和这个数相乘再相加。

  不同点:算式左边和右边有什么不同?

  联系:算式左边和算式右边有什么联系?

  6、举例:这样的算式你能再举出一些吗?

  7、概括:你们能把上面的规律概括成一句话吗?

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  你能用字母表示吗?(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  8、质疑:还有什么问题?

  三、巩固

  1、做一做

  判断并说明理由

  2、第5题:下面哪些算式运用了乘法分配律

  3、第6题

  103×1220×5524×20525×24

  四、:你们还有什么问题?

  五、布置作业:

  1、口算

  2、作业本

  3、寻找生活中乘法分配律的例子。

  板书设计

  作业设计:

  课堂作业本P15

  口算训练P16

  教学反思

  课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的`顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

  在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

  生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

  生2:是呀,一个数好像是公共财产,都是它们共有的。

  这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

乘法分配律教案4

  本课题教时数:25本教时为第20教时备课日期11月15日

  教学目标

  1.使学生认识乘法口算应用了乘法分配律,并能说明是怎样应用乘法分配律口算乘法。

  2.使学生初步理解和学会应用乘法分配律进行简便计算的方法,能对一些乘法算式用简便算法正确计算,进一步培养学生采用合理、灵活的方法进行乘法计算的能力。

  教学重难点

  使学生初步理解和学会应用乘法分配律进行简便计算的方法。

  教学准备

  投影片

  教学过程设计

  教学内容

  师生活动

  备注

一、复习旧知

  二、学习新课

  三、巩固练习

  四、布置作业

  1.复习乘法分配律

  (1)什么是乘法分配律?你能用字母式子表示吗?

  (2)根据乘法分配律在括号里写出算式。

  (40+7)×6=()

  4×(25+70)=()

  36×3+24×3=()

  5×72+5×28=()

  2.揭示课题

  上面四道题,哪边的计算适用于口算?

  应用乘法分配律,可以使一些计算用口算,比较简便。这节课我们就学习乘法分配律的'应用,使一些计算简便。(板书课题)

  1.乘法分配律在口算中的应用

  (1)口算23×4

  让学生说说口算的过程。指出:我们学过的乘法口算的方法,应用了什么运算定律?怎样运用的?

  (2)口算:

  32×316×448×2

  指名学生讲是怎样算的?

  2.学习例6

  (1)出示计算第1题103×32

  (2)小组讨论:看怎样计算比较简便?

  (3)学生尝试着进行计算,指名学生板演。

  (4)请板演的同学说说是怎样计算的?应用了什么运算定律?

  (5)用简便方法计算:304×22401×16

  2.学习例6第2题46×12+12×54

  (1)以学习小组为单位,讨论:看怎样计算比较简便?

  (2)学生尝试着进行计算。指名学生进行板演。

  (3)请板演的同学讲一讲计算的方法。

  (4)用简便方法计算:38×7+62×7

  56×29+56×31

  3.学习“试一试”

  (1)出示35×9+35

  (2)学生独立完成,完成后请同学讲讲计算方法。

  (3)口算:

  48×9+4826×19+26

  37×49+3753×99+53

  1.做“练一练”第2题。

  指名3人板演,其余学生做在练习本上。

  集体订正。让学生说说每一题是怎样想的?

  2.这节课我们学习了什么内容?在什

  么情况下我们用乘法的分配律使计算简便?你能举几个例子吗?

  练习十八第5题第二、三行

乘法分配律教案5

  教学目标

  1.使学生理解乘法分配律的好处.

  2.掌握乘法分配律的应用.

  3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.

  教学重点

  乘法分配律的好处及应用.

  教学难点

  乘法分配律的反应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1. 口算.

  (27+73)×8 40×9+40×1 14×

  (10+2) 10×6+10×4

  2. 用简便方法计算.(说明根据什么简算的) 25×63×4

  3. 师生比赛,看谁算得又对又快. 20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:乘法分配律).

  2.教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6下载 (2)引导学生观察每组的两个算式.

  (3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的好处.

  (6)反馈练习:按题要求,请你说出一个等式.(投影出示) (__+__)×__=__+__×

  教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘. 其次是等号右边两个加数分别同一个数相乘再把两个积相加. 最后是等号左右两边的两个算式相等.

  3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c 使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.

  5.教学例7:演示课件“乘法分配律”出示例7下载 (1)出示例7:102×43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律能够使计算简便.

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,能够把原式改写成什么形式? 根据学生的回答教师板书:9×37+9×63 =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数

  ③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便。此刻你们会了吗?

  三、巩固发展

  演示课件“乘法分配律”出示练习 下载

  1. 练习十四第1题.

  根据运算定律在□里填上适当的.数. (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数.

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

  3.把相等的算式用等号连接起来: (1)32×48+32×5232×(48+52)

  (2)(24+8)×824×5+24×8

  (3)20×(l+15)0×17+20×15

  (4)(40+28)×540×5+ 28

  (5)(10×125)×810×8+125×8

  (6)4×(30+25)4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选取题:

  (1)28×(42+29)与下方的()相等

  ①28×42+28×29②(28+42)×(28+29)③28×42×29 (2)与a×8-b×8相等的式于是()

  ①(a+b)×8②(a-b)×(8+8)③(a-b)×8 (3)与(10+8+9)×5相等的式子是()

  ①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9 5.练习十四第4题,投影出示.

  一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?

  四、课堂小结

  这天我们学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

  五、布置作业

  练习十四第3题.

  用简便方法计算下方各题.

  (80+8)×2535×37+65×37

  32×(200+3)38×29+38

乘法分配律教案6

  教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教学过程:

  一、复习

  教师出示式题:

  1.(35+65)×372.35×37+65×37

  3.85×(174+26)4.85×174+85×26

  5.(80+8)×256.80×25+8×25

  7.32×(200+3)8.32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学算第1题和第3题,第4、5、6组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做得快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的`大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例7。

  (1)教师出示例题:计算102×43。

  教师:这道题是一个三位数乘一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “上面计算中的第二步根据是什么?”(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  (2)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两个乘积的和。

  “仔细看一看这道题里的两个乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系上面的复习题,想一想这道题怎样做才能使计算简便呢?”(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师:这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先,要计算的是两个乘积的和;两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  结语:过去我们做口算乘法时,实际上已经应用了乘法分配律。让学生自读第65页的相关内容。

  三、课堂练习

  做练习十四的题目。

  1.第2题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”

  2.第3题,先让学生自己计算。核对时让学生回答:

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教师先把算式38×29+38写在黑板上,再引导学生想:从表面上看这道题不是两个乘积的和,但是题中的乘法有因数38,后面所加的数恰好也是38,由此我们可以想到如果所加的数是38乘一个数,那时我们就可以用乘法分配律了。提问:

  “想一想怎样使所加的38变成38与一个数相乘,而且乘积仍是38?”教师同时板书:38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

乘法分配律教案7

  教学目标:

  1、使学生在探究的过程中,能自主发觉乘法安排律,并能用字母表示。

  2、通过视察、分析、比较,培育学生的分析、推理和概括实力。

  3、发挥学生主体作用,体验探究学习的欢乐。

  教学重点:

  指导学生探究乘法的安排律。 教学难点:

  乘法安排律的应用。

  教学打算:

  课件、口算题、例题、练习题等。 教学策略:

  本节课的学习我主要实行自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、英勇地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。

  谁来说一说,驾驭乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速推断。(生口算。)

  设计意图:这样开宗明义的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。

  二、探究发觉

  1、猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。 师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。 师:为什么这样算哪?

  生:我是依据乘法安排律算的。 师:你是怎么知道的?你知道什么是乘法安排律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学实力很强,但对乘法安排律的内涵还不了解,这节课我们就来探究乘法安排律好吗?(板书课题:乘法安排律。)

  2、验证。

  师:同学们看两个数的.和同一个数相乘,假如可以这样计算的话,那可简便多了。究竟能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发觉。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。) 小结:通过验证,这道题的确可以这样算,那是不是全部的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是全部的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发觉,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们视察黑板上的几组等式,看看你们得到的结论是什么? 3、结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。 师:同学们真聪慧,你们知道吗?这就是乘法的第三个运算定律“乘法安排律”。(出示课件,学生齐读安排律的意义。)

  师:假如老师用a、b、c表示两个加数和乘数,你能用字母表示乘法安排律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法安排律,的确可以使一些计算简便。接下来,我们利用乘法安排律计算几道题。 设计意图:在探究乘法安排律的过程中,让学生经验了一次严密的科学发觉过程:猜想——验证——结论。为学生的可持续学习奠定了基础。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法安排律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法安排律,看到乘法安排律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和驾驭乘法安排律,并能正确地进行表述。让学生参加学问的形成过程,培育学生概括、分析、推理的实力,并渗透从特别到一般,再由一般到特别的相识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经验和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发觉的过程,是在详细的情境中整个身心投入到学习活动,去经验和体验学问形成的过程,也是身心多方面须要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特别的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最终由学生通过视察、探讨、发觉、归纳总结出乘法安排律。整个过程中,我不是把规律干脆呈现在学生面前,而是让学生通过自主探究去感悟发觉,使主体性得到了充分发挥。在这个探究过程中,学生经验了一次严密的科学发觉过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注意合作与沟通

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,老师在本课教学中立足通过师生多向互动,特殊是通过学生与学生之间的相互启发与补充,来培育他们的合作意识,实现对“乘法安排律”这一运算定律的主动建构。学生对“乘法安排律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验胜利的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

乘法分配律教案8

  教学内容:

  教科书第69页例6,练习十四的第310题。

  教学目的:

  使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。

  教具准备:

  复习中的题目写在小黑板上。

  教学过程 :

  一、复习。

  教师出示式题:

  1.(35+65)37 2.3537+6537

  3.85(174+26) 4.85174+8526

  5.(80+8)25 6.8025+825

  7.32(200+3) 8.32300+323

  根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?

  教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。

  这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  1.教学例6。

  (1)教师出示例题,计算937+963。

  教师:这道题是要计算两个乘积的和。

  仔细看一看这道题里的两个乘法计算中的因数有什么特点?

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)

  联系上面的复习题,想一想这道题怎样做才能使计算简便呢?(先把37和63加起来,是100,再同9相乘,得900。)

  这是应用了什么运算定律?

  教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的`计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:10243。

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?(给学生留出思考时间。)

  教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,

  板书:10243

  =(100+2)43

  =10043+243

  =4386

  上面计算中的第二步根据是什么?(乘法分配律。)

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;

  三、课堂练习

  做练习十四的题目。

  1.第3题,让学生口算。

  2.第4题,先让学生自己计算。核对时让学生回答一如果按运算顺序计算,应该先算什么?怎样计算简便?根据是什么?

  3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。

  4.第9题和第lo题。先让学生独立做,核对时要让学生说出每个算式的意义。

  5.提前做完的学生做第19*题。

乘法分配律教案9

  教学内容:

  苏教版小学数学第七册P58

  教学目标:

  1、在学生初步掌握乘法分配律的基础上,能应用乘法分配律进行简便计算。

  2、通过计算与比较,发现乘法分配律可以类推到两个数的差与另一个数相乘。

  教学重点、难点:发现乘法分配律可以类推到两个数的差与另一个数相乘。

  教学准备:

  教学情境挂图

  设计理念:

  通过实际题目来理解乘法分配律的意义,在计算、观察以及和乘法对加法的分配律的'比较中,内化乘法对减法的分配律。

  教学步骤

  教师活动

  学生活动

 一、揭示课题

  1、明确要求:这节课我们用乘法分配律的知识来解答一些题目。

  2、板书课题。

  回忆。

  二、复习乘法对加法的分配律

  1、练习五第1题。

  ⑴引导学生观察看图。

  ⑵思考:怎样计算小正方体的个数?

  ⑶指名汇报,并说说这样计算的依据。

  ⑷根据学生的汇报板书。

  2、练习五第2题。

  出示16401

  (30+2)15

  引导学生重点说说算法。

  出示10323

  125(8+16)

  重点引导学生用不同的方法算。

  看图,弄清图意。

  思考。

  列出两种算式进行计算。

  汇报,说出计算的依据,明确乘法分配律的实质。

  练习。

  指名板演。

  集体订正。

  练习。

  指名板演。

  集体订正。

  三、学习乘法对减法的分配律

  1、练习五第3题。

  ⑴出示第3题。

  ⑵你发现了什么?能用自己的话表达出来吗?

  ⑶与刚才我们做的题目有什么不同?

  2、练习五第4题。

  出示:12(40-5)

  3598

  引导学生重点说说第2题的计算方法。

  3、练习五第5题。

  ⑴指名读题。

  ⑵解答第一个问题。

  ⑶解答第二个问题。

  ⑷小结:这一题是乘法分配律在实际生活中的应用。

  分组计算一组题目。

  指名板演。

  观察,交流发现的规律。

  与乘法对加法的分配律进行比较。

  计算。

  指名板演。

  集体订正。

  读题。理解题意。

  练习。反馈

  练习,列出不同的算式。比较。

  四、小结作业

  提问:

  通过这节课的学习,你有什么收获?你的表现怎样呢?

  指名回答,自我评价。

  作业设计:课堂作业:练习五第2、4题中剩下的两题。

  教学反思:

乘法分配律教案10

  设计说明

  教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:

  1.游戏激趣,设置悬念。

  在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。

  2.观察、比较,举例验证猜想。

  在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的过程,从而积累丰富的探究数学知识的经验。

  3.多角度练习,强化认识和理解。

  小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的.延伸。

  课前准备

  教师准备 多媒体课件

  教学过程

  ⊙游戏激趣

  1.比赛热身。

  师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。

  师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。

  (1)9×37+9×63 (2)9×(37+63)

  2.评出胜负。

  师:做完的同学请举手,汇报计算过程。

  师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?

  预设

  生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。

  师:同学们说得非常好,尤其是××,我们就先将他的这个发现命名为××猜想。

  设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。

  ⊙引导探究,发现规律

  1.课件出示例7。

  一共有多少名同学参加了这次植树活动?

  (1)需要知道哪些条件?请在情境图里找一找。(出示情境图)

  (2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)

  (3)小组讨论,尝试用不同的方法解决问题并板书。

  引导各小组汇报解题方法,并说明这样解题的理由。

  解法一 (4+2)×25

  =6×25

  =150(名)

  (4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)

  解法二 4×25+2×25

  =100+50

  =150(名)

  (4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)

  2.观察算式,探究发现。(见课堂活动卡)

  (1)小组合作,讨论探究。

  ①两道算式有什么相同点?

  ②两道算式有什么不同点?

  ③两道算式有什么联系?

乘法分配律教案11

  教学内容:教科书第64页例7,练习十四的第3一10题。

  教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

  教学难点:应用乘法分配律简便计算

  教具准备:将复习中的题目写在小黑板上。

  教学过程:

  一、复习

  教师出示试题:

  1、(35+65)×37

  2、35×37+65×37

  3、85×(174+26)

  4、85×174+85×26

  5、(80+8)×25

  6、80×25+8×25

  7、32×(200+3)

  8、32×200+32×3

  “根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

  教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

  “哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

  教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的'。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

  教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

  “这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

  教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从下面的计算可以看出,应用乘法分配律可以使一些计算简便。

  二、新课

  教学例7

  (1)教师出示例题:计算9×37+9×63。

  教师:这道题是要计算两上乘积的和。

  “仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

  (两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

  “联系下面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

  “这是应用了什么运算定律?”

  教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

  教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

  (2)教师出示例题:102×43

  教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

  “想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

  教师:从下面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

  板书:102×43

  =(100+2)×43

  =100×43+2×43

  =4386

  “下面计算中的第二步根据是什么?”(乘法分配律)。

  教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

  三、课堂练习

  做练习十四的题目。

  1、第3题,让学生口算。当计算101×57和45×102时,提问:“你是怎样做的?得多少?”

  2、第4题,先让学生自己计算。核对时让学生回答。

  “如果按运算顺序计算,应该先算什么?”

  “怎样计算简便?根据是什么?”

  第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

  “下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

  3、第7题,先让学生独立做,然后集体核对,核对的要让学生说一说是怎样做的。当核对“26×3”时,学生说出计算方法后,再让学生说一说计算过程。

  学生发言后,教师说明:26乘以3可以写作(20+6)×3,根据乘法分配律等于20乘以3的积再加6乘以3的积,这实际上是应用了乘法分配律。这就是说,我们过去学过的乘法口算有些应用了乘法分配律。

  这道题中的第7小题应用乘法结合律比较简便,第4、6、8、9题应用乘法分配律比较简便。

  4、第9题和第10题,先让学生独立做,核对时要让学生说出每个算式的意义。

  5、提前做完的学生可以做第9题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:

  (80—30)×110一30×110;

  (80—30—30)×110;

  (80—30×2)×110。

  四、作业

  练习十四的第5、6、8题。

乘法分配律教案12

  教学内容:北师大版四年级下册数学教科书第36页内容,和练习四的第5.6.7.9题。

  教学目标:

  1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  教学重点:充分感知并归纳乘法分配律。

  教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。

  教具准备:多媒体课件

  教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

  活动过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  9×37+9×63

  9×(37+63)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  9×37+9×63=9×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的'猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、

  (1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

  轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

  等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

  在读这句话的时候,哪里应特别注意?

  请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

  1、请大家根据运算定律在下面的_里填上适当的数。5.6.7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

  2、大家请到数学医院,帮老师判断对错。

  3、完成连一连。(给一分钟思考时间,然后抢答)

  4、完成填一填。(这道题我找表现最好的小组来开火车)

  5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

  五、全课小结

  请你选择一个最能代表今天研究成果的。算式,说说我们今天研究了什么?

  请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律教案13

  教材简析:

  能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。

  教学目标:

  1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。

  2、让学生学习应用估算的方法判断计算结果的合理性。

  3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。

  教学过程:

  一、讲解学生作业错得较多的题目

  1、99×37+37=37×(□○□)

  指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”

  2、把左右两边相等的算式用线连起来

  11×58+49×11 12×77+8×77

  (12+8)×77 36×25+4×25

  (58+12)×14 27×21+27×29

  27×(21+29) 11×(58+49)

  (36×4)×25 58×14+12

  先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?

  (1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的'。

  (2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。

  二、学习例题

  1、出示例题图

  说说例题的信息和问题,说说相关的数量关系式。

  2、列式并估算等:32×102≈3200(元)

  说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。

  还可以怎么算?(用竖式算)

  3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?

  (加上2件),这2件是多少元呢?总共是多少元?

  怎么把这个过程完整地用算式表达出来呢?

  板书:32×102

  =32×(100+2)

  =32×100+32×2

  =3200+64

  =3264(元)

  指出:利用乘法分配律,我们可以把这类题目进行简便计算。

  学生完成书上的例题剩下部分。

  4、完成试一试:用简便方法计算46×12+54×12

  观察算式特点,并完成简便计算。交流:=(46+54)×12

  =100×12

  =1200

  比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?

  (有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)

  三、完成想想做做

  1、在□里填上合适的数,在○里填上运算符号(题略)

  学生独立完成,再校对。

  2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)

  学生说出口算的过程,体会也是运用了乘法分配律。

  3、读第5、6题,观察数据的特点,说说怎么算才更简便?

  四、探索思考题

  99×99+199○100×100

  观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?

  在交流过程中完成板书

  99×99+199

  =99×99+99×1+100

  =99×(99+1)+100

  =99×100+100×1

  =100×(99+1)

  =100×100

  学生自己尝试完成算式:999×999+1999的探索过程

  发现规律,直接完成算式:9999×9999+19999=( )×( )

  五、布置作业

  p.57第2、4、5、6题

乘法分配律教案14

  教材分析

  乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  学情分析

  学生具有了很好的自主探究、团结合作、与人交流的习惯,学生在学习了探究(一)和探索(二)后,掌握了一些算式的规律 ,有了一些探索规律的方法和经验,有了一定的'基础,本节课注重引导,指点,会收到很好的效果。

  知识与技能:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感态度价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学重点和难点:

  教学重点:理解并掌握乘法的分配律。

  教学难点:乘法的分配律的推理及运用。

乘法分配律教案15

  教学内容:

  数学四年级上册P48探索与发现(三)乘法分配律

  教学目标:

  1、使学生理解并掌握乘法分配律,并会用字母表示。

  2、能够运用乘法的分配律进行简便计算。

  3、培养学生观察发现、猜想、举例验证,得出结论等初步的逻辑思维能力。

  4、培养学生独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学准备:

  多媒体,题单

  教学过程:

  一、创设情境,调动参与。

  师:以往上课只有老师和同学们,今天还有谁来了?

  生:爸爸妈妈

  师:爱爸爸妈妈吗?

  生:爱。

  师:把这一句话,分成两句话,怎么说。(我爱爸爸和妈妈)

  生:我爱爸爸,我爱妈妈。

  师:能把下面两句话合成一句话吗?(我喜欢语文课,我喜欢数学课。)

  师:中国语言真神奇,同样的意思,可以一句话来说,也可以两句话来说。而在数学中,也有类似的思考方法。今天,就让我们一起走进探索与发现(三)。

  二、新授,根据两种计算方法探索形成等式。

  1、出示例1,学生独立计算,然后上台板演两种不同的方法。

  (市场上的苹果每千克8元,罗老师先买了6千克,又买了4千克,罗老师一共花了多少钱?)

  2、读每种方法的算式,说一说每一步在算什么。

  3、口答。

  4、算式答案一样,用等号连接,写成一个等式。

  5、生读一读等式。

  6、观察这个等式,从等式中你发现了什么?

  7、出示例2。这个组合图形的面积是多少平方厘米?(A长方形:长7厘米,宽5厘米;B长方形:长3厘米,宽5厘米。)

  默读题目,用两种方法计算。

  8、展示学生的算法。

  第一个算式每一步分别在算什么?

  第二个算式每一步分别在算什么?

  这两个算式都在算组合图形的面积。答案相同,这两个算式也可以写成一个等式,((7+3)X5=7X5+3X5)

  三、观察等式,发现规律。

  1、师:下面,请大家带着这两个问题,仔细观察这两个等式。(“观察发现”)

  1、等号左右两边算式有什么相同的地方?有什么不同的地方?

  2、你能从乘法的意义来说明左边和右边的算式结果为什么会相等吗?

  2、先独立思考,然后和四人小组的同学交流你的想法。

  3、汇报。

  (1)数字相同,符号相同。运算顺序不同。(运算顺序是怎样的不同)

  (2)第一个等式的左边和右边都表示10个8相加是多少,第二个等式的'左边和右边都表示10个5相加是多少,所以结果相同。

  4、根据这些特点,你有什么发现。

  生汇报自己的想法。

  师:我听明白了,大家发现了这个规律:两个数的和乘一个数,等于把这两个加数分别乘这个数,再把积相加。是这个意思吧?这只是我们的猜想。(“猜想”)

  你能举出一些有这样规律的例子吗?(“举例”)

  5、你们在草稿本上举个例子来试试,为了方便计算和节约时间,大家可以选择小一点的数字。

  6、学生汇报。

  生口答,师板书学生的两个例子。

  还能举出其他的例子吗?(能)刚才我们用举例的方法验证了这个猜想,在举例的过程中有没有发现结果不一样的例子。(没有)

  看来这个规律是普遍存在的,在数学上,我们把这个规律叫做乘法分配律。(板书)(“得出结论”)

  读一读乘法分配律。

  刚才我们举了很多有这个规律的例子,这样的例子能举完吗?(不能)加上省略号。

  四、得出结论,揭示课题。

  用字母表示。

  师:如果用a,b,c三个字母代替数字,你能表示出乘法分配律吗?

  学生口答:(a+b)xc=axc+bxc

  这个等式反过来也成立。学生从左往右读一次,再从右往左读一次。

  师:a和b都与哪个数相乘了?(C),C就是a和b共同的乘数。

  五、运用。

  师:运用乘法分配律,我们来练一练。

  1、判断下面各题。

  (25+8)x4=25x4+8x4

  (10+5)x18=10x18+5

  6x(a+b)=6xa+axb

  生口答,错在哪儿?

  2、运用乘法分配律填一填。

  师:我们来运用乘法分配律填一填。

  课件出示:(10+7)x6=()x6+()x6

  8x(125+9)=8x()+8x()

  7x48+7x52=()x(+)

  学生口答,1、2题学生直接做判断。3题追问,48和52都同(7)相乘了,那么(7)就是48和52共同的乘数。

  3、计算。

  出示练习题:(40+4)X25 34X72+34X28

  第一题:展示两种算法。比较算法,用乘法分配律,可以使计算更简便。

  第二题:展示算法。

  为什么大多数同学都使用乘法分配律来计算了?

  小结:运用乘法分配律,可以使一些计算更简便。以后再遇到这样的题目时,我们就要先思考,是直接按题目的运算顺序算呢,还是可以用简便方法来算。

  六、课堂小结

  师:通过今天的学习,大家有收获吗?你学到了什么?还有其他的收获吗?

  生谈谈自己的收获。

  师:是的,今天我们学习了乘法分配律,利用这个规律,可以使一些计算变得更简便。在学习乘法分配律时,我们的学习方法是:先观察发现,然后猜想,再举例验证,最后得出结论。学习数学知识,可以使我们的学习和生活变得更简单。

  七、回归课本,翻书阅读,完成课堂作业。

  今天我们学习的内容在数学书48页和49页,同学们翻书仔细看一看。看完后在课堂本上完成今天的课堂作业49页,练一练2题的第1列和第2列