《比例的基本性质》教学反思
身为一位优秀的老师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么优秀的教学反思是什么样的呢?下面是小编为大家整理的《比例的基本性质》教学反思,希望对大家有所帮助。
《比例的基本性质》教学反思1
从整堂课来看,把握住了整个流程,抓住了本节的重点和难点,从孩子们的反馈可以看出达到了本节的教学目标,对比例的意义及基本性质掌握都很好,并能运用它的意义及基本性质判断两个比能否组成比例。在教学过程中尊重了孩子是课堂主体这一理念,让孩子们通过观察、思考、交流,在探索中得出结论并能学以致用。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本节课的亮点是在学习比例的时候从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点,然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。在比例基本性质的学习中,把知识的探究过程留给了学生,问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。同时小组共同探讨有助于培养学生的合作意识。
为了充分体现数学知识与现实生活的联系,在课的最后我安排了一个在今后工作中会遇到、学生又很感兴趣的问题:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?这样渗透了学数学和用数学的教学思想,同时也告诉孩子们数学生活化的重要性,从而激励孩子们热爱数学并能学好数学。
本节课也存在很多不足:
首先是在时间上掌握不是很好,在前面复习导入部分用时过多,加上练习题偏多、偏难,以至于学生思考时间较长,所以整堂课看起来前松后紧。
其次,在课堂形式上显得比较单一,和孩子们的互动不是很多,替孩子们回答的较多,在课堂中出现的问题没能够灵活处理,给学困生的鼓励较少。并且在整堂课中的语速都偏快。
再次,在知识的讲解上也存在一些问题,比如在新旧知识的衔接上不够灵活,在分数比例里应该读成比的形式,但一部分同学读成了分数形式,而没有给予纠正。在练习题中孩子们耗时较多,这也恰恰说明了前面的环节没有教扎实。在最后思考题的摄入中给孩子们的启发较少,没能充分体现数学与生活的联系。
在今后的教学中我会更加严格要求自己,不断完善自己,让我和孩子们都能有更大的进步!
《比例的基本性质》教学反思2
用本课的设计始终围绕教学目标而进行,突出重点,有措施,突出难点有策略,整个教学过程体现了教师为主导,学生为主体的精神,具体而言,有如下两大特色:
1、活了教材,设计者将教学内容分解成20多个问题,每个问题既有侧重,又都围绕着重点来进行,使原先教材上的死知识变成了课堂中的“活问题”,让学生在解决问题中探究知识的形成过程。
2、搞活了课堂。课堂的活有两种形式,一是形式上的活,一是内在的活,即让学生的思维始终处于活跃状态。前一种活是显性的,后一种活是隐性的,比较难以达到,它需要教师对教学内容的深刻理解以及较高的驾驭课堂的能力。本课的活就属于后一种,教师通过指导学生自学、讨论、数量演示等多种方式,来回答教师提出的问题,使学生的思维一直处于活跃状态,故而能事半功倍,较好地完成教学任务。
综上所述,本课的设计体现了一种较高的教学教育观念—教是为了不教。
《比例的基本性质》教学反思3
今天教学了比例的基本性质。从教材的编排体系来说,本节课的教学环节清晰,先由旧知入手,用求比值或化简比的方法来判断两个比是否能组成比例,接着出示两个按一定比例缩小前后的两个三角形,并分别标有底和高的长度,让学生根据数据写出比例来,并引导学生观察这几个比例的共同特征,从而初步发现比例的基本性质,再接着举例验证规律的成立,总结比例的基本性质,最后应用性质。在教学中不仅重视学生逻辑思维的培养,还能引导学生从不同角度解决同一问题,从而加强发散思维的训练,提高学生的数学素养。但未曾想学生的想法与老师预设的就是不一样,在本课练习时遭遇了他们的“有力阻击”,他们另辟蹊径去思考,而且在那种题型的背景下初听起来似乎有些许道理,实属我所未料。题目是这样的:
哪一组中的四个数可以组成比例?把组成的比例写出来。
(1)6、4、18和12 (2)4、5、6和8
第一位学生(金雁蓉)的回答是这样的:因为这四个数都是偶数,所以它们能组成比例。
第二位学生(毛逸宁)的回答是这样的:因为四个数中有一个是奇数,所以它们不能组成比例。
我的点评:四个数必须都是偶数才能组成比例吗?四个数中如果有一个是奇数就不能组成比例吗?同学们思考一下,你们同意他俩的观点吗?(暂时的沉默)
两位学生都是本班的聪明学生,却都局限在数的外在形式上,看它们是否为2的倍数,从奇数、偶数来思考这个问题,而没有从比例的基本性质来判断。看来学生的第一直觉与老师的预想(用比例的基本性质判断)不一致。而且经他们两个一说,还把部分学生的思维给牵向他们的思路去了。
此刻,是选择老师直接点拨(请大家先把最大的数乘以最小的数,再把中间两数相乘,看积是否相等,然后再作出判断。)还是继续等待学生有正确的发现?我选择了等待。果然,一会儿有学生提出了不同的想法“根据刚才学习的内容,我想到了把四个数中最大的数和最小的数相乘,中间两个数相乘,如果乘积相等,就能组成比例。我是用比例的基本性质来思考判断的。第(1)题6、4、18和12,把18×4=72,12×6=72,所以18×4=12×6,写出比例是18:6=12:4;第(2)题4、5、6和8,把4×8=32,5×6=30,所以4×8≠5×6,不能组成比例。”看来她理解很透彻,已经能学以致用了。
“很聪明,思路清晰,方法正确,讲的非常好,能把前后知识联系起来,依据充分!”
“我刚才也是这样想的!”部分学生附和。
“我认为我说的还是对的!”毛逸宁坚持己见。
“在这个题目中,你的判断刚巧符合正确结论,但推及其它题目呢?似乎行不通吧?”我提请他自我反思。
他依然有一脸不服气,在思考怎么有力反驳我。我当时为了教学进度没有停留作继续解释。
课后想想,我的做法有些不妥,一来其他学生也许会以为毛逸宁的方法也行得通呢,二来也会影响毛逸宁同学后面的听课效果,他卡壳在那里就听不下去了呀!这是一次失败的应对!如果当时我能给其一个明确的反例,不就可以消除他的错误观点了吗?比如我可以这样说:如果把6换成32/5或6.4,它们四个数不就可以组成比例了吗?(也许他还会反驳现在有了小数或分数了,而不是原来的整数了!)我还可以这样说:如果把5换成另一个奇数3,总符合你的三个偶数和一个奇数了吧,它们不照样可以组成比例?如果当时我能这样处理,课堂教学会更精彩,学生理解会更深刻,只是当时的处理不细腻、也不智慧!留下了遗憾。
我们常说应对生成要灵动,可关键时刻还是拿捏不住,在应对时有些措手不及,免不了做些无效劳动,日后有必要更为深入地了解学情,真正沉下去,做好充分的预设再进入课堂才是教学之上策。反思本节课,以后还需对学生的状况做好充分的预设及准备,使自身能及时应对课堂中出现的各种状况,生成更多精彩的课堂。
《比例的基本性质》教学反思4
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质及应用比例的基本性质解比例问题。
通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫工作,然后再通过例题,得出两个比的比值相等,从而概括出比例的意义,再利用比例意义判断两个比能否组成比例,我们安排了让学生写出比值相等的比,再组成比例,目的在于加深对比例意义的认识和理解。同时也让学生联系以前的内容对应找出比和比例的区别,使学生不仅能明确比和比例的不同之处,更能对比例的意义产生更进一步的理解。而正因为比例和比不同,所以具有着不同的各部分名称。让学生自学进行了解各部分名称,用一组前面用过的练习题让学生找出比例的内项和外项,同时用启发性的问题“你能找出比例中乘积相等的数吗”引导学生自己去观察思考发现外项积等于内项积,从而得到并归纳出比例的基本性质。由此可得到判断两个比能否组成比例的方法。最后进行小结。
上完课后,我们首先的感觉是虽然有学生自主的探究,但还没能完全放的开,思路还不够开阔。
我的复习提问是问一句学生回答一句的,问了三个问题“什么是比”“什么是比值”“怎样求比值”。在教学例1的时候本来感觉挺简单的,学生回答的甚至比我们想象中的还要好,因为我们课前一再强调要回答完整,其实这节课我们学生回答问题我们自己挺满意的,因为什么所以什么都说的很完整。课后我们反思,可以在这里渗透正比例的意义,因为两个比的比值相等,而它们的比值是什么呢?就是工作效率。如果耕地的时间增多,相应的耕地的公顷数也就是工作总量也会随之增多。这是我们当时没想到的,我们没能想到这个深度。要反省。
在比较比和比例的区别的时候,学生说的挺多,什么比例有四个数比有两个数,比是一个比比例是两个比,比没有等号比例有等号。我觉得他们说的都挺对,当时还挺高兴的。后来想想,这都是表面上的区别,而意义上的区别其实才更重要。比是两个数相除,而比例是表示两个比相等的式子,从意义上来说就完全不一样,这对突出本节课的重点比例的意义就很有帮助。在上课时我们有些操之过急,没有让学生充分的去说,有些包办代替,应当多找些学生说一说,让学生更多的了解比和比例的不同。
在这节课中,我感到成功的地方在于教学重点突出,练习有层次,能够在不断的变化形式上加强练习,学生基本上掌握了所学的知识。但是忽视了学生的情感目标,在课堂上教师应当起指导作用,学生起主体作用。学生探究数学的味道还不浓,我们给学生探究的时间不多,我们在学生探究活动中的指导稍弱一些,还应当大胆的让学生进行探究。
为了更好的完成教学任务,我重视从下列几方面做好工作:
一、充分做好新知识教学前的准备工作。
为了学好新知识,我在课的一开始就出示了一组“比”,由这组比,引导学生回忆有关比的知识,如:什么叫做比,比各部分的名称,什么叫做比值,求比值的方法是什么?为后边学习比例意义做好了知识上的准备。
二、创设情境,激发求知欲,形成勇于创新的意识。
为了使学生学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题:形成勇于探索、勇于创新的科学精神。我在新授前将设计这样一段情境:同学们,你们知道吗?在我们的身上也有很多有趣的比,如人的胸围的长度与身高之比是1:2,将拳头滚动一周的长度和脚的长度的比是1:1,人脚的长度与身高的比是1:7。当人们了解了这些,又掌握了这种神奇的本领后,去买袜子只需要把它绕圈一周就知道合适不合适了,而侦察员就能根据罪犯脚印的长度推测出身高。你想拥有这种本领吗?这种神奇的本领就是我们这节课所研究的内容,比例的意义和性质。
三、通过学生动手操作和小组讨论,得出新的知识。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
(一)在学习比例的意义 时,我先让学生根据要求亲自动手写人以两个数的比,并求出比值。然后,分析这些比的比值,看发现了什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,理解比值相等时组成比例的核心,在判断两个比能不能组成比例时,关键看这两个比的比值是否相等。为强化理解在这时我安排了两种形式的练习:1、判断。2、组比例。最后通过小组讨论:比与比例的联系与区别,并揭示数学知识不是孤立的,而它们之间都存在着密切的联系。
(二)在比例的基本性质教学过程中我是分三步进行的:
第一步,先由老师说明比例各部分的名称,同时提示比例还可以写成分数的形式,并由学生自己标出所写的内项、外项。
第二步,通过学生自己计算内项的积和外项的积,发现比例的基本性质并加以概括。
第三步,为了进一步加深对比例的基本性质的理解,我精心设计了由易到难得三种类型练习。
(三)为了充分体现数学知识与现实社会的联系,在课的最后我安排了一个在今后工作中会遇到、学生又很感兴趣的问题:某罪犯作案后逃离现场,只留下一只长25厘米的脚印。已知脚的长度与人体身高之比是1:7,你能推测罪犯身高大约是多少吗?这样渗透了学数学用数学的教学思想,同时也潜移默化的帮助学生树立了学好文化知识有利于社会发展的意识。
《比例的基本性质》教学反思5
许许多多的知识点,使得教师只能用简单的“传授——接受”的教学方式来进行。而学生只是记忆、再现这些知识点,沦为考试的奴隶。其实知识是死的,课堂教学绝不仅仅让学生拥有知识,更应该让学生拥有智慧,拥有获取知识的方法。
从教育心理学角度看,学生智慧的发展,离不开智慧的熏陶。智:是人类个体的认识过程或认知结构,即对外部信息的感知、整理、联想、储存很搜索、提取、操作,或通过此过程形成的认知水平。慧:是人类个体所认知事理的评判过程和评判标准。我校通过创设智慧课堂,使教学触及学生的世界,伴随他们的认知活动,做到了“以智促知” 。
我教学时注意了以下几点:
1、注重从学生已有的知识出发,主动建构知识。在教学“比例的基本性质”时,让学生自己选择例子来探索,在探索中发现规律,得到结论。让学生处于积极探索的状态,唤醒了学生学习中一些零散的体验,并在教师的引导下主动将这些体验“数学化”,提炼出数学知识。
在教学中,不仅要求学生掌握抽象的数学结论,更应注重学生的“发现”意识,引导学生参与探讨知识的形成过程,尽量挖掘学生的潜能,能让学生通过努力,自己解决问题。这一教学过程,让学生通过计算、观察、发现、自学的方式,使学生在自己探索中学习知识,发现知识,并通过讨论,说出判断两个比能否组成比例的依据,促进了学生学习的顺利进行。
2、用教材教,体现教学的民主性。因为学生对比的知识了解甚多,所以在研究“比例的基本性质”的时候,不是教师出示教材中的例子,而是让学生自己举例研究,使研究材料的随机性大大增强,从而提高结论的可信度。这样也能让学生体会到归纳法研究的过程,并渗透科学态度的教育。
整个教学过程力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。如要求学生用自己的语言归纳比例的基本性质,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易到难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
3、在运用比例的基本性质进行判断时,要求学生讲明理由,培养学生有根据思考问题的良好习惯;在填写比例中未知数时,不仅要求学生说出理由,还要求学生进行检验,这样培养学生良好的检验习惯和灵活解决问题的能力,培养良好的学习习惯。
4、给予学生自主探究的时间、自由驰骋的思考空间,允许他们有不同的想法、不同的方法,在开放式、个性化的学习中生成灵感,碰撞智慧。正是学生用自己独特的学习方式来解决问题,课才变得生动和真实,学习才显得如此活泼和有效。数学的学习成了充满灵性的创造过程,成了放飞心灵的快乐之旅。课堂已不仅是学科知识传递的殿堂,更是智慧培育的圣殿。
《比例的基本性质》教学反思6
上周四上了《比例的意义》和《比例的基本性质》一课,自以为准备比较充分,于是把本应分为两课时的内容在一节课内完成了。最直接的后果是没有充分地进行比例的基本性质的运用练习。
一方面,由于课堂是时间比较紧迫,另一方面,我选择了教材练习6中的一些习题让学生做,大部分学生都能比较顺利地完成。因此我也没有发觉有多大的问题。
但是,等到周五上完解比例,课堂作业本交上来的时候,我却发现了很多问题。比如习题2是“根据比例的基本性质,把下列各比例改写成乘法等式。”有不少学生把“3.2:4=4:5”改写成“3.2×=4×”,显然是把除法转换成了乘法,而不是根据题目要求运用比例的基本性质:外项之积等于内项之积。其余几小题也如法炮制。这样做的学生还不在少数,没有看清题目要求是原因之一,更为主要的是对比例的基本性质不熟悉。最后责任还是在教师,课堂上没有足够的时间供学生通过练习来理解、掌握比例的基本性质。由于比例的基本性质这一课没有过关,自然也影响到了后面的解比例。本来学生对解含有分数的方程就比较容易混淆,什么时候该乘,什么时候该除,一部分学生也没有十足的把握。现在再加上很多学生将比例与从比例转化得到的乘法算式混淆,以及内项、外项如何相乘的问题也容易混淆,所以更加增加了解比例的难度。
要解决问题,还得抓住根本。这节课上,我先是对比例的一些基本概念结合具体数据作了复习,再出示比例20:5=16:4,让学生根据比例的基本性质将它转化成乘法算式。对于比例的基本性质的基本运用,学生还是没有问题的。当然很容易就把它改写成了20×4=5×16。我又请学生将这个乘法算式改写成比例,说说除了刚才的20:5=16:4之外,还可以怎么改?有什么规律?开始有学生因为受到概念“外项之积等于内项之积”的影响,只能说出20:16=5:4,有些学生心里有不同的想法,却也不敢表达。我于是鼓励学生将20×4=5×16改成5×16=20×4,看等式是否仍成立,又是否能形成新的'比例。经我这么一提醒,大多数学生都说出了还可以写成5:4=20:16,5:20=4:16,16:20=4:5等。并且发现只要乘法中的同一边的因数在转化成比例后必须同时是内项或者同时是外项,至于谁在左,谁在右,不影响比例的成立。因此,这也就使等式能转化成多组比例了。在此基础上,我增加了一点难度,将比例的其中一项固定,根据比例的意义或者比例的基本性质写出另外几项。学生根据刚才的发现,认为还有一个外项可以先确定,而乘法算式中和4相乘的是20,那么4已经作为外项,20也只能做外项了,剩下两个数16和5作为内项,放在等号的左边还是右边,比例都成立。我有让学生用比例的意义,即通过求两个比的比值又验算了一遍。
这样,学生对比例的基本性质就有了进一步的理解和掌握,同时也发现解决问题的方法不止一种,在已知比例的一项或几项,要求写出剩余的几项,可用到的方法除了运用比例的基本性质之外,也可以用比例的意义,甚至还可以把比例转化成分数的写法,根据分数的基本性质来解决问题。
《比例的基本性质》教学反思7
在教学比例的基本性质时,首先让学生上黑板随便写几组比,教师马上说出能不能组成比例,想知道原因吗,请看课本34页,一下子激发起学生的兴趣,然后学生自学认识比例的各部分名称、认识内项和外项,完成后进行反馈,并充分应用学生书写的比例来强化内外项的知识。然后再进行激趣:“通过自学发现老师一下就确定能不能组成比例的奥妙了吗?”学生针对黑板上的题叙述比例的基本性质,如果把比例写成分数形式呢,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。
整个教学过程主要由“激趣”、“探究”、“应用”这样三个教学环节组成。在“激趣”这个环节中,从寻找新旧知识的联接点入手,直入重点。采用自学方式展开探究,让学生自己去发现新问题,探索新知识。“探究”是本课最重要的一个环节,在这个环节中主要引导学生怎样自己的努力去发现比例的“秘密”,归纳出规律性的结论。整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。教学设计中还特别注意发展学生的个性,如要求学生用自己的语言归纳比例的基本性质等。在“应用”这个环节中,强调及时应用及时反馈,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
《比例的基本性质》教学反思8
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2、4:1、6=3/260:40=3/2
2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。
2、4:1、6=5:10/32、4;1、6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2、4X40=96在比例里,两个外项的积等于两
1、6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
《比例的基本性质》教学反思9
在教学比例的基本性质时,首先让学生根据教材所提供的两组数据,独立写成比例,再联系比的前项和后项的知识激趣:“我们学的比例中的四个数也有自己的名字,请自学第43页的内容。”学生自学认识比例的各部分名称、认识内项和外项,完成后进行反馈,并充分应用学生书写的8组比例来强化内外项的知识。然后再进行激趣:“比例中的内项和外项还有一个有趣的规律,请大家分别算出它们的内项和(差、积、商)与它们的外项和(差、积、商),看看你能发现了什么?”“再随便找几个比例,看看这些比例中有没有这个有趣的现象?”引导学生计算出在比例中两个外项积和两个内项积,从而发现其中的规律,总结出比例的基本性质。下面通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等,最后得出比例的性质。让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值的方法,也可以用求两个外项积和两个内项积是否相等的方法。课上安排应用比例性质进行填空练习,进一步加深学生对比例性质的认识与掌握。
整个教学过程主要由“设疑”、“探究”、“应用”这样三个教学环节组成。在“设疑”这个环节中,我能从学生已有知识入手,精心寻找新旧知识的联接点,过渡自然流畅。采用问题解决式展开探究,让学生自己去发现新问题,探索新知识。“探究”是本课最重要的一个环节,在这个环节中主要引导学生怎样自己的努力去发现比例的“秘密”,归纳出规律性的结论。整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从中提高学生的数学学习的能力。教学设计中还特别注意发展学生的个性,如要求学生用自己的语言归纳比例的基本性质等。在“应用”这个环节中,强调及时应用及时反馈,重视在练习中发挥教师的指导作用,使练习的针对性更强,巩固练习在层次上由易难,在形式上由封闭走向开放,让学生的聪明才智、才能得到充分的发挥,真正主动学习,成为学习的主人。
《比例的基本性质》教学反思10
“比例的基本性质”这一内容的新知教学环节并不复杂,针对整个教学过程我想说三个方面,一个是新知教学时的问题,另两个都是对教材中的习题的处理问题。
其一:教学比例的基本性质时,教材中有这样的一个问题——“观察前面的四个比例,你有什么发现?”注意句中的用词——前面的四个比例,如果只观察其中的一个比例,学生可能还能容易些发现其中的规律,比如性质。但是四个比例一起观察研究,从课堂教学的实际情况看,学生发现更多的就是各个数在各项位置的变化情况,而对性质内容的发现学生比较滞后,也有少数学生举手示意发现了,但是我没有让假扮他们立即作答,原因有二,一是我感觉这部分学生大部分可能是课前或课上先看了书上内容(纸上得来终觉浅),二是举手的人数只有八、九个,面太少了。面对这一情况,首先,我让学生小组内先交流一下自己的发现或想法(举手的人稍微多了些——一半人左右),我还是没有全班交流,我继续加以启发“刚才我们把一个比例的四个项分为外项和内项,大家看看这些比例的外项和内项之间有没有什么联系?如果有,可以同桌再交流一下。”在上面的基础上,进行全班交流,效果很好。
其二:在对教材“练一练”的处理,练一练我没有先练,而是放到了练习十第4题后进行的(基本是整个练习的最后),在学生独立练习作出判断后,我进行了追问:“你是怎样判断给出的4个数能不能组成比例的?”从而让学生深刻体会到比例的基本性质。
《比例的基本性质》教学反思11
“比例的基本性质”这一内容的新知教学环节看起来并不复杂,但是在接触时仍然出乎我的意料,学生的理解和利用总有一些差别。
教学比例的基本性质时,对照写出来的比例我给大家提出了一个问题“观察比例的内项和外项有什么关系?”学生大部分把几个比例一起观察研究,他们发现更多的是各个数在各项位置的变化情况,而对性质内容的发现比较滞后,也有少数学生举手示意发现了,但这部分学生大部分是课前或课上先看了书上内容(纸上得来终觉浅)。如果只观察其中的一个比例,学生才能容易发现其中的规律,比如性质。所以我再次提醒学生是看每一个比例的两个内项和两个外项有什么关系,不是这几个比例一起看。这样学生终于发现一个比例中外项之积等于内项之积,又找其他几个比例验证,从而确定这个规律,总结出了比例的基本性质。接着通过把比例写成分数形式,让学生形象地看到两个外项积和两个内项积就是将比例中等号两端的分子和分母分别交叉相乘,积相等。
在应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,除了求比值、化简比的方法,还可以用求两个外项积和两个内项积是否相等的方法。
但是在利用比例解决问题时,出现的困难还是不少。很多学生对于比例的基本性质背诵的很熟练,但对于灵活运用还欠火候。比如根据算式1/3×5/6=5/9×1/2写出比例,有些学生就蒙了。其实从算式中应该想到,这是外项之积等于内项之积的写法,倒回去就可以。但学生看不到想不到,在课堂上解释时仍有些学生糊里糊涂。
《比例的基本性质》教学反思12
今天上了一堂《比例的意义和基本性质》的实验课,课后的第一感受就是学生一头没有把握好,以致于练习的内容都压缩了。下面对整个教学做如下反省:
一、开始阶段写比这一环节,没有起到任何作用,原本的意图是通过找相等的比后引出比例这一知识点,在教学中,没料到学生举手少,发言少,稀稀拉拉的几个比,没有任何两个比是相等的。因此这一环节还不如直接出示几个比,直接求比值,从比值中看相等的比,既让学生了解比例是怎么来的(看比值是否相等),又进一步为学习判断两个比是否成比例打下基础。
二、教学比例的意义和基本性质的时候,教学比较含糊,没有突出点,学生在判断的时候,弄不清哪个是用意义在比较,哪个是用基本性质在比较。教学过程应该改为上面这一段,在研究比例的基本性质的时候,抓住关键,让学生多说,说完整。
三、练习难度偏高。从这堂课来看,似乎难度高了些,以致于学生思考时间比较长,这也恰恰说明了前面的环节没有教扎实。如果前面的问题都解决好,这个问题就不存在了,而且还能成为这课的亮点。
《比例的基本性质》教学反思13
1.重视培养学生主动获取知识的能力。对于比例的基本性质,教师没有直接让学生去计算两个内项的积和两个外项的积,很快让学生归纳出比例的基本性质。而是设计问题情境,在学生运用已有知识判断出两个比能否组成比例后,教师告诉学生自己是用比例的基本性质也很快作出了判断。什么是比例的基本性质?学生探究知识的欲望被激发了。接着,就让学生自己去观察、寻找比例中内项与外项的关系,提出自己的猜想,举例(包括反例)进行检验,与同伴合作交流,自己揭示出比例的基本性质,学生通过亲身经历的观察比例、归纳猜想、举例验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
2.注重培养学生数学的应用意识。小学生解数学题,往往关心问题的答案而不太关心自己的解题过程,更很难自觉地从基本概念出发去思考问题,教学中如何去培养学生从概念出发、运用所学知识解决问题的意识和能力呢?在上面的教学中,教师精心安排三个层次的练习:
(1)运用比例的基本性质,判断两个比能否组成比例;
(2)请你根据“2×9=3×6”写出比例,能写出多少呢?
(3)用“3、4、5、8”这四个数能组成比例吗?若不能,请从3、4、5、8中换掉一个数,使之能组成比例。每个层次的练习,都是先让学生独立思考、进行尝试,再引导学生交流想法,促进学生进行反思,使学生获得切身的体验,感悟到从比例的基本性质出发思考问题,则能更有效地解决问题。这样的练习,才能使学生在巩固和加深对数学基本概念理解的同时,逐渐养成从基本概念出发思考问题的思维习惯,培养学生数学的应用意识,提高学生解决问题的能力。
《比例的基本性质》教学反思14
比例的意义和基本性质,是在学生学习了“比”后进行教学的,导入新课时出示三面国旗,并通过求长和宽比值,引导学生观察,然后提问学生发现什么?在学生充分感知的基础上,揭示比例的意义。在此同时还要使学生在学习过程中,在判断两个比能否组成比例时,关键看这两个比的比值是否相等。
为强化理解在这时我安排了随堂练习:
1、写出比值是1.5的比,并组成比例。
2、练习八第一题。
在比例的基本性质教学过程中我是分三步进行的:
第一步,区别比和比例,提出问题:比和比例有什么联系和区别?学生回答后,教学比例各部分的名称,同时提示比例还可以写成分数的形式,并由学生自己标出所写的内项、外项。
第二步,通过学生自己计算内项的积和外项的积,发现比例的基本性质并加以概括。
让学生应用比例的性质验证自己写的比例成立不成立,使学生明白,验证比例式是否成立,
课堂小结:判断两个比能否组成比例有两种方法:
1、求比值。
2、利用比例的基本性质。
课堂上安排了反馈练习,进一步加深学生对比例性质的认识与掌握。
在整个教学过程中,重视学生的全面参与,通过学生动手、动脑、观察、计算、自学与讨论等活动,
第三步,为了进一步加深对比例的基本性质的理解,我精心设计了由易到难得两种类型练习。
《比例的基本性质》教学反思15
本周三,在教学《比例的意义和基本性质》时,通过复习求比值,找出比值相等的比,为教学比例的意义做好铺垫,概括出比例的意义,利用比例意义判断两个比能否组成比例,安排了让学生写出比值相等的比,再组成比例,还安排了四个数组成比例,目的在于加深对比例意义的认识和理解。在认识比例的各部分名称时,我让学生看书自学,然后让他们自己说说比例的各部分的名称。
此外,组织学生探究比例的基本性质,引导学生“分别算一算比例的两个外项和两个内项的积,你发现了什么?”大胆放手,用四个数组成等式这一开放练习产生新鲜有用的教学资源,我通过引导让学生展开讨论,进行了有效的探究。
本节课我注重了对学生的评价,用多种语言来激励学生,但是有的地方还是做的不太好。如果在这里感情更深些,更能激起他们的学习兴趣,使她们能更好的参与学习。在今后的教学的实践中我将不断完善自己的教学方法,提高教学质量。
【《比例的基本性质》教学反思】相关文章:
6.正比例教学反思