椭圆方程教案

时间:2024-11-09 14:45:35 教案 我要投稿

椭圆方程教案

  作为一位杰出的老师,就不得不需要编写教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?以下是小编收集整理的椭圆方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

椭圆方程教案

  椭圆方程教案 篇1

  椭圆是平面上的一种几何形状,它与圆形非常相似,但其在两个轴向上的半径不同。在数学和物理学中,椭圆起着重要的作用,可以用于描述许多自然现象、机械工程和电子学中的运动。

  因此,学习椭圆的基础知识和标准方程非常重要。以下是一个椭圆的标准方程的课件,并附有相关的主题范文。

  第一部分:基础知识

  椭圆是一个平面图形,其轮廓接近于一条细长的圆环。椭圆有两个主轴,一个短轴和一个长轴。长轴被定义为椭圆上相对于短轴的最长线段,短轴则被定义为最短线段。椭圆的中心是其两条主轴的交点。

  椭圆的标准方程为:

  (x^2/a^2) + (y^2/b^2) = 1

  其中,a和b分别代表椭圆长轴和短轴的两个半径。

  如果椭圆的中心是点(h,k),那么椭圆的标准方程变为:

  ((x-h)^2/a^2) + ((y-k)^2/b^2) = 1

  此外,还有其他形式的椭圆方程,如极坐标方程和参数方程。但是,标准方程是最常见和最基础的形式。

  第二部分:应用场景

  在物理学和工程应用中,椭圆的标准方程经常出现。例如,在电子学中,一些磁体被设计成具有椭圆形的横截面,以获得更平稳和均匀的磁场。椭圆形还可以用于描述人类运动中的一些趋势,例如,椭圆形的跑步机模拟行走或跑步时脚的移动。

  此外,椭圆形还被广泛应用于行星轨道和天体物理学中。为了计算行星的`轨道,天文学家使用古典力学中的基本方程和几何。而椭圆形的形状可以很好地描述行星轨道的椭圆形。

  第三部分:练习

  为了更好的理解椭圆的标准方程,以下是一些练习,帮助您更好的掌握椭圆基础知识:

  1. 给定椭圆的长轴和短轴长度,计算其到原点距离。

  2. 根据椭圆的标准方程,计算其长轴和短轴的长度,并绘制出椭圆形。

  3. 如果椭圆的中心位于(-3,2),长轴长度为10,短轴长度为6,那么该椭圆的标准方程是多少?

  4. 给定椭圆的标准方程,求出其中心坐标。

  5. 那个椭圆的标准方程是(x/9)^2 + (y/4)^2 = 1,其离心率的值是多少?

  总之,椭圆形式是一种基本的几何形状,具有广泛的应用,在数学、物理学和工程学中起着重要的作用。理解它的标准方程是建立对椭圆的深入理解的关键。在练习中不断学习椭圆的基础知识,从而更好地理解其应用和化身。

  椭圆方程教案 篇2

  本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。

  一、椭圆的基本概念

  椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:

  1. 主轴(长轴):连接两个焦点且最长的轴;

  2. 次轴(短轴):连接两个焦点且最短的轴;

  3. 焦距:点到椭圆两个焦点的距离之和;

  4. 离心率:椭圆的焦距与主轴长的比值;

  5. 中心:椭圆的中心点,位于主轴和次轴的交点处;

  6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。

  二、椭圆的标准方程

  椭圆的标准方程为:

  其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。

  三、使用椭圆的标准方程解题

  通过椭圆的'标准方程,我们可以解决各种实际问题,例如:

  1. 确定椭圆的中心、焦距和离心率;

  2. 求椭圆的长轴和短轴;

  3. 求过给定点的椭圆的方程;

  4. 求椭圆与坐标轴相交的点;

  5. 求椭圆的面积和周长。

  例如,假设有一个椭圆方程为x2/25 + y2/16 = 1,我们可以通过标准方程给出以下解答:

  1. 中心为(0, 0);

  2. 长轴长度为10,短轴长度为8;

  3. 过给定点(3, 4)的椭圆方程为(x-3)2/25 + (y-4)2/16 = 1;

  4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);

  5. 面积为40π,周长为4(π+2)。

  总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

  椭圆方程教案 篇3

  一、教学内容分析(简要说明课题来、学习内容、这节课的价值以及学习内容的重要性)

  本节课是高中新课程人教A版数学选修1—1第二章第一单元《椭圆及其标准方程》的第一课时.

  本节的内容是继学习圆之后运用 “曲线和方程”理论解决具体二次曲线的又一实例.从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,因此,这节课有承前启后的作用,是本节乃至本章的重点。

  二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述)

  基于新课标的要求,结合本节内容的地位,我提出教学目标如下:

  (1)知识与技能:

  ①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程; ②使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.

  (2)过程与方法:

  ①让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想; ②学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.

  (3)情感态度与价值观:

  ①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.

  ②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,

  ③通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.

  三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)

  1.能力分析

  ①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱。

  2.认知分析

  ①学生已初步熟悉求曲线方程的基本步骤,②对曲线的方程的概念有一定的了解。

  3.情感分析

  学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

  改变学生的学习方式是高中课改追求的基本理念。遵循以学生为主体,教师为主导,发展为主旨的现代教育原则。我采用了通过创设情境,充分调动学生已有的学习经验,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题;以学生主动探索、积极参与、共同交流与协作为主体,在教师的引导下,学生“跳一跳”就能摘得果实;于问题的分析和解决中实现知识的建构和发展。通过不断探究、发现,让学生的学习过程成为心灵愉悦的主动过程,使师生的生命力在课堂上得到充分的发挥。激发学生的学习兴趣和创新能力,帮助学生养成独立思考积极探索的习惯。

  四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)

  椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我校学生基础差、底子薄,数学运算能力,分析问题、解决问题的`能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动 。在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习

  五、教学重点及难点(说明本课题的重难点)

  基于以上分析,我将本课的教学重点、难点确定为: ①重点:椭圆定义和标准方程 ②难点:椭圆的标准方程的推导。

  六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)

  一. 创设问题情境:

  情境1:给出椭圆的一些实物图片:天体运行图(月亮绕地球,地球绕太阳旋转)、汽车油罐的横截面,立体几何中圆的直观图?

  实物:圆柱形杯倾斜后杯中水的形状。

  情境2:校园内一些椭圆形小花坛

  问题 学校准备在一块长3米、宽1米的矩形空地上建造一个椭圆形花园,要尽可能多地利用这块空地,请问:如何画这个花园的边界线?

  (学生现在还不能解决,只有通过今天这节课的学习才能解决这个问题)

  这是实际生活中图形,数学中我们也遇到这一类图形:归结为到两定点距离之和为定值的点的轨迹问题。如何用现有的工具画出图形?(启发学生用画圆的方法试着画图)

  教师与学生一起找出上述问题的解决方案,并一同用给的工具画出图形,与上述图形相似——椭圆

  问题情境的创设应有利于激发学生的求知欲。为了学习椭圆的定义,我设计如下两个学生熟悉的情境:

  通过情境1,让学生感受到椭圆的存在非常普遍。小到日常生活用品,大到建筑物的外形,天体的运行轨道。

  通过情境2,让学生主动思考如何画椭圆及椭圆的定义。

  通过问题,要求学生以小组为单位进行实验、观察、猜想,激发学生探索的欲望和浓厚的学习兴趣,使学生的主体地位得到体现。

  二. 探求椭圆方程

  如何选取坐标系?

  方案1:以一个定点为原点,两定点的连线为X轴

  回顾圆的方程的建立过程,首先是做什么? (提问学生) 如何选择适当的坐标系来建立椭圆的方程呢?

  学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。

  方案2:以两定点的连线为X轴,其垂直平分线为Y轴

  学生可能有很多种建系方法,根据课堂的实际情况进行处理。不能否定学生的方法,让学生自己讨论那种建系方法更为合适,我想学生通过这些活动能够建立几种常见的坐标系,并列出相应的代数方程。我认为这样有利于培养学生的动手实验,分析比较,相互协作等能力。让学生体验到知识的产生过程。

  三. 标准方程比较

  (让学生讨论,归的标准方程有何异同) (1)相同点纳出这两种形式的标准方程有何异同)

  (1)相同点

  ①方程中x,y表示椭圆上任意一点 ②关于x,y的二元二次方程;

  ③焦点位置的判定:焦点在较大分坐标;

  (2)不同点

  ①方程形式 ②图形 ③焦点坐标

  由于化简两个根式的方程的方法特殊,难度较大,估计学生容易想到直接平方,这时可让学生预测这样化简的难度,从而确定移项平方可以简化计算。为此,我首先启发学生如何去掉根号较好,让学生动手比较,最后得出移项平方化简方程比较简单,这样有利于培养学生的分析比较能力。

  七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力

  八、板书设计(本节课的主板书)

  一.定义

  二. 标准方程比较

  1)相同点 ①方程中x,y表示椭圆上任意一点的坐标; ②关于x,y的二元二次方程; ③焦点位置的判定:焦点在较大分母对应的变量的坐标轴上

  2)不同点 ①方程形式 ②图形 ③焦点坐标

  九.教学反思

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程教案 篇4

  教学目标:

  1、通过本节课课前及课堂上的探索研究过程,使学生理解椭圆的定义,掌握椭圆的标准方程;

  2、复习和巩固求轨迹方程的基本方法.

  3、能够理解椭圆轨迹和方程之间的关系,进一步提高学生解析能力;

  教学重点:

  1、椭圆的定义和椭圆的标准方程及其求法,

  2、椭圆曲线和方程之间的相互关系.

  教学难点:

  1、建立适当的坐标系,求椭圆标准方程.

  2、利用椭圆的定义和标准方程研究曲线.

  教学方式:体验式

  教学手段:多媒体演示.

  学生特点:本节课的教学对象为高中实验班学生,数学基础较好.

  教学过程:

  1、给出椭圆定义

  由学生根据课前的预习叙述椭圆的定义:

  1)椭圆的定义:

  平面内与两定点F1,F2的距离的和等于常数(大于 )的点的轨迹(或集合)叫做椭圆.F1, F2叫做椭圆的焦点; 叫做椭圆的焦距.

  2)展示学生通过预习椭圆知识,结合椭圆的知识所作的“图形”,并介绍椭圆的做法,帮助同学了解椭圆的定义,同时引出椭圆标准方程

  2、推导椭圆标准方程

  推导方程:(以下方程推导过程由学生完成)

  ①建系:以 和 所在直线为 轴,线段 的中点为原点建立直角坐标系;

  ②设点:设 是椭圆上任意一点,设 ,则

  ③列式:由 得

  ④化简:移项平方后得

  整理得

  两边平方后整理得,

  由椭圆的定义知, 即 ,∴ ,令 ,其中 ,代入上式,得 ,两边除以 ,得: ( ))

  3.进一步认识椭圆标准方程

  (掌握椭圆的标准方程,以及两种标准方程的区分)

  (1)方程 ( )叫做椭圆的标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  (2)方程方程 ( )也是椭圆的`标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  4.通过例题巩固椭圆的标准方程.

  例1 求适合下列条件的椭圆的标准方程:

  (1) 两个焦点的坐标分别是(-3,0),(3,0),椭圆上任意一点与两焦点的距离的和等于8;

  (2) 两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点 .

  5.再次展示学生所作椭圆,让学生利用椭圆方程和椭圆定义来判断所作的“椭圆”,并说明判断的依据,进一步椭圆定义和椭圆的标准方程.

  6.小结:

  这节课我们围绕椭圆及其标准方程研究了椭圆这几个方面的问题:

  (1)椭圆的定义;

  (2)椭圆的标准方程推导;

  (3)利用椭圆的定义和标准方程研究曲线;

  7.作业:

  (1)P42,练习A第1,2,3,4题; (2)求演示图形5中椭圆的方程.

  椭圆方程教案 篇5

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.

  教学重点:椭圆的定义和椭圆的标准方程.

  教学难点:椭圆标准方程的推导.

  教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.

  教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.

  教学过程

  (一)设置情景,引出课题:

  1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实

  物和图片,让学生从感性上认识椭圆.

  2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。

  提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的.轨迹是椭圆?

  下面请同学们在绘图板上作图,思考绘图板上提出的问题:

  1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

  2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

  3.当绳长小于两图钉之间的距离时,还能画出图形吗?

  (二)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  椭圆方程教案 篇6

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1、教学重点:椭圆的定义及其标准方程

  2、教学难点:椭圆标准方程的推导

  (三)三维目标

  1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

  3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6、例题讲解:通过例题规范学生的解题过程。

  7、巩固练习:以多种题型巩固本节课的教学内容。

  8、归纳小结:通过小结,使学生对所学的知识有一个完整的'体系,突出重点,抓住关键,培养学生的概括能力。

  9、课后作业:面对不同层次的学生,设计了必做题与选做题。

  10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

  椭圆方程教案 篇7

  教学目标

  1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

  2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

  3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

  4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

  5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

  教学建议

  教材分析

  1. 知识结构

  2.重点难点分析

  重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

  椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

  (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

  另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

  (2)根据椭圆的定义求标准方程,应注意下面几点:

  ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

  ②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

  ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

  ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

  (3)两种标准方程的椭圆异同点

  中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

  椭圆的焦点在 轴上 标准方程中 项的分母较大;

  椭圆的焦点在 轴上 标准方程中 项的分母较大.

  另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .

  (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

  教法建议

  (1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

  为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

  例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

  (2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

  为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

  (3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

  教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

  教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

  (4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

  在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

  (5)注意椭圆的定义与椭圆的标准方程的联系

  在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的.对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

  (6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

  推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

  (7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

  (8)在学习新知识的基础上要巩固旧知识

  椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

  (9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

  椭圆方程教案 篇8

  椭圆是二维平面上的一种几何形状,其形状近似于一个扁圆的球。其特点是有两个焦点,所有点到这两个焦点距离之和相等。椭圆的标准方程可以通过焦点和长轴长度来确定。在本篇文章中,我们将重点介绍椭圆的标准方程及其相关的性质和应用。

  一、椭圆的标准方程

  椭圆的标准方程有两种形式,一种是普通形式,另一种是中心形式。我们先来看看椭圆的普通形式:

  $displaystylefrac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$

  其中,(h,k)表示椭圆的中心坐标,a是长轴的长度,b是短轴的长度。从上式中可以看出,椭圆是对称的,其中心点位于(x,y)平面上。

  椭圆的中心形式为:

  $displaystylefrac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$

  其中(h,k)为椭圆的中心点坐标,a是长轴的长度,b是短轴的长度。从中心形式可以看出,椭圆的中心这个重要的点可以直接读出,并且坐标为(h,k)。

  二、椭圆的性质

  1、椭圆的离心率

  椭圆的离心率定义为焦距与长轴的比值,即:

  $displaystyle e=frac{c}{a}$

  其中,c表示两个焦点之间的距离。对于任何一个椭圆,离心率必须满足0≤e

  2、椭圆的焦点坐标

  椭圆有两个焦点,其坐标可以通过下面的公式计算:

  $(h±ae,k)$

  其中,(h,k)表示椭圆的中心点坐标,a是长轴的长度,e是椭圆的离心率。

  3、椭圆的面积

  椭圆的'面积可以通过下面的公式计算:

  $S=πab$

  其中a是长轴的长度,b是短轴的长度。

  三、椭圆的应用

  1、轨道运动

  椭圆是天体广泛运动的形状之一,例如人造卫星、行星、彗星等都沿着椭圆轨道运行。科学家们通过对椭圆轨道的模拟和分析,可以计算出行星、卫星等天体的运动情况,进而掌握它们的位置和运动状态。

  2、建筑设计

  椭圆是一种非常常见的建筑设计元素。例如,椭圆形的穹顶可以为建筑物提供更好的稳定性和抗震能力。椭圆形的立柱也能更好地承受建筑物的重量。椭圆形的窗户则提供了更大的采光面积,让人们感受到更加宽敞和明亮。

  3、医疗图像处理

  椭圆也具有实用价值。例如,医学图像处理中,医生们可以利用椭圆轮廓测量器测量肿瘤的形状、尺寸等信息,从而对病情进行更准确的评估和治疗。

  总之,椭圆是一个重要的二维图形,具有广泛的应用和实用价值。通过椭圆的标准方程和性质,我们可以更好地理解椭圆,并且将它应用到实际生活和工作中。

  椭圆方程教案 篇9

  椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

  一、椭圆的定义与性质

  椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

  1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

  2. 椭圆的两个焦点之间的距离等于椭圆的.长轴长。

  3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

  二、椭圆的标准方程

  对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

  1. 椭圆的长轴与x轴平行:

  $(frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2=1$;

  其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

  2. 椭圆的长轴与y轴平行:

  $(frac{x-x_0}{b})^2+(frac{y-y_0}{a})^2=1$;

  其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

  三、椭圆的应用

  椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

  1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

  2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

  3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

  4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

  四、结语

  本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

  椭圆方程教案 篇10

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

  教学重点:

  椭圆的定义和椭圆的`标准方程。

  教学难点:

  椭圆标准方程的推导。

  教学方法:

  探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

  教具准备:

  多媒体课件和自制教具:绘图板、图钉、细绳。

  教学过程:

  (一)设置情景,引出课题

  问题:XX年10月12日上午9时,“神舟六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神舟六号”飞船的运行轨道是什么?多媒体展示“神舟六号”运行轨道图片。

  (二)启发诱导,推陈出新

  复习旧知识:圆的定义是什么?圆的标准方程是什么形式?

  提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式? 各组分别选定一种方案:(以下过程按照第一种方案)

  ①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

  ②设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则设与两定点的距离的和等于。

  ③列式

  ④化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)

《椭圆方程教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【椭圆方程教案】相关文章:

椭圆及其标准方程教案06-12

椭圆及其标准方程教案(范例5篇)07-14

“解方程”教案07-10

小学方程教案08-21

直线与方程教案11-06

《方程的意义》教案05-16

(荐)《方程的意义》教案15篇05-28

《方程的意义》教案汇编【15篇】05-28

中班数学认识椭圆形教案07-22

化学方程式教案11-05

椭圆方程教案

  作为一位杰出的老师,就不得不需要编写教案,教案是教学活动的总的组织纲领和行动方案。我们该怎么去写教案呢?以下是小编收集整理的椭圆方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

椭圆方程教案

  椭圆方程教案 篇1

  椭圆是平面上的一种几何形状,它与圆形非常相似,但其在两个轴向上的半径不同。在数学和物理学中,椭圆起着重要的作用,可以用于描述许多自然现象、机械工程和电子学中的运动。

  因此,学习椭圆的基础知识和标准方程非常重要。以下是一个椭圆的标准方程的课件,并附有相关的主题范文。

  第一部分:基础知识

  椭圆是一个平面图形,其轮廓接近于一条细长的圆环。椭圆有两个主轴,一个短轴和一个长轴。长轴被定义为椭圆上相对于短轴的最长线段,短轴则被定义为最短线段。椭圆的中心是其两条主轴的交点。

  椭圆的标准方程为:

  (x^2/a^2) + (y^2/b^2) = 1

  其中,a和b分别代表椭圆长轴和短轴的两个半径。

  如果椭圆的中心是点(h,k),那么椭圆的标准方程变为:

  ((x-h)^2/a^2) + ((y-k)^2/b^2) = 1

  此外,还有其他形式的椭圆方程,如极坐标方程和参数方程。但是,标准方程是最常见和最基础的形式。

  第二部分:应用场景

  在物理学和工程应用中,椭圆的标准方程经常出现。例如,在电子学中,一些磁体被设计成具有椭圆形的横截面,以获得更平稳和均匀的磁场。椭圆形还可以用于描述人类运动中的一些趋势,例如,椭圆形的跑步机模拟行走或跑步时脚的移动。

  此外,椭圆形还被广泛应用于行星轨道和天体物理学中。为了计算行星的`轨道,天文学家使用古典力学中的基本方程和几何。而椭圆形的形状可以很好地描述行星轨道的椭圆形。

  第三部分:练习

  为了更好的理解椭圆的标准方程,以下是一些练习,帮助您更好的掌握椭圆基础知识:

  1. 给定椭圆的长轴和短轴长度,计算其到原点距离。

  2. 根据椭圆的标准方程,计算其长轴和短轴的长度,并绘制出椭圆形。

  3. 如果椭圆的中心位于(-3,2),长轴长度为10,短轴长度为6,那么该椭圆的标准方程是多少?

  4. 给定椭圆的标准方程,求出其中心坐标。

  5. 那个椭圆的标准方程是(x/9)^2 + (y/4)^2 = 1,其离心率的值是多少?

  总之,椭圆形式是一种基本的几何形状,具有广泛的应用,在数学、物理学和工程学中起着重要的作用。理解它的标准方程是建立对椭圆的深入理解的关键。在练习中不断学习椭圆的基础知识,从而更好地理解其应用和化身。

  椭圆方程教案 篇2

  本学习课件主要介绍椭圆的标准方程,旨在帮助学习者深入理解椭圆的数学概念与相关知识,并掌握有效的解题技巧。椭圆是一个常见的几何图形,其在数学、物理等领域中都有广泛的应用。通过本课件的学习,学习者将会了解椭圆的特性、性质,学习椭圆的标准方程,以及如何利用标准方程求解各种实际问题。

  一、椭圆的基本概念

  椭圆是一种平面曲线,由所有到两个固定点(焦点)距离之和等于常数(主轴长)的点组成。以下是椭圆的基本特性和定义:

  1. 主轴(长轴):连接两个焦点且最长的轴;

  2. 次轴(短轴):连接两个焦点且最短的轴;

  3. 焦距:点到椭圆两个焦点的距离之和;

  4. 离心率:椭圆的焦距与主轴长的比值;

  5. 中心:椭圆的中心点,位于主轴和次轴的交点处;

  6. 双曲线:对于焦距小于主轴长的情况,椭圆变成双曲线。

  二、椭圆的标准方程

  椭圆的标准方程为:

  其中a为长轴的半轴长,b为短轴的半轴长,(h, k)为椭圆的中心坐标。

  三、使用椭圆的标准方程解题

  通过椭圆的'标准方程,我们可以解决各种实际问题,例如:

  1. 确定椭圆的中心、焦距和离心率;

  2. 求椭圆的长轴和短轴;

  3. 求过给定点的椭圆的方程;

  4. 求椭圆与坐标轴相交的点;

  5. 求椭圆的面积和周长。

  例如,假设有一个椭圆方程为x2/25 + y2/16 = 1,我们可以通过标准方程给出以下解答:

  1. 中心为(0, 0);

  2. 长轴长度为10,短轴长度为8;

  3. 过给定点(3, 4)的椭圆方程为(x-3)2/25 + (y-4)2/16 = 1;

  4. 与x轴的交点为(-5, 0)和(5, 0),与y轴的交点为(0, -4)和(0, 4);

  5. 面积为40π,周长为4(π+2)。

  总之,椭圆的标准方程是解决各种和椭圆相关问题的基础和关键。学习者需要掌握标准方程的推导和使用方法,并了解其在实际问题中的应用场景和解题技巧,以提高对椭圆的理解和应用能力。

  椭圆方程教案 篇3

  一、教学内容分析(简要说明课题来、学习内容、这节课的价值以及学习内容的重要性)

  本节课是高中新课程人教A版数学选修1—1第二章第一单元《椭圆及其标准方程》的第一课时.

  本节的内容是继学习圆之后运用 “曲线和方程”理论解决具体二次曲线的又一实例.从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,因此,这节课有承前启后的作用,是本节乃至本章的重点。

  二、教学目标(从知识与技能、过程与方法、情感态度与价值观三个维度对该课题预计要达到的教学目标做出一个整体描述)

  基于新课标的要求,结合本节内容的地位,我提出教学目标如下:

  (1)知识与技能:

  ①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程; ②使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.

  (2)过程与方法:

  ①让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想; ②学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.

  (3)情感态度与价值观:

  ①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神.

  ②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,

  ③通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.

  三、学习者特征分析(说明学习者在知识与技能、过程与方法、情感态度等三个方面的学习准备(学习起点),以及学生的学习风格。最好说明教师是以何种方式进行学习者特征分析,比如说是通过平时的观察、了解;或是通过预测题目的编制使用等)

  1.能力分析

  ①学生已初步掌握用坐标法研究直线和圆的方程,②对含有两个根式方程的化简能力薄弱。

  2.认知分析

  ①学生已初步熟悉求曲线方程的基本步骤,②对曲线的方程的概念有一定的了解。

  3.情感分析

  学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

  改变学生的学习方式是高中课改追求的基本理念。遵循以学生为主体,教师为主导,发展为主旨的现代教育原则。我采用了通过创设情境,充分调动学生已有的学习经验,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题;以学生主动探索、积极参与、共同交流与协作为主体,在教师的引导下,学生“跳一跳”就能摘得果实;于问题的分析和解决中实现知识的建构和发展。通过不断探究、发现,让学生的学习过程成为心灵愉悦的主动过程,使师生的生命力在课堂上得到充分的发挥。激发学生的学习兴趣和创新能力,帮助学生养成独立思考积极探索的习惯。

  四、教学策略选择与设计(说明本课题设计的基本理念、主要采用的教学与活动策略)

  椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我校学生基础差、底子薄,数学运算能力,分析问题、解决问题的`能力,逻辑推理能力,思维能力都比较弱,所以在设计课的时候往往要多作铺垫,扫清他们学习上的障碍,保护他们学习的积极性,增强学习的主动 。在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习

  五、教学重点及难点(说明本课题的重难点)

  基于以上分析,我将本课的教学重点、难点确定为: ①重点:椭圆定义和标准方程 ②难点:椭圆的标准方程的推导。

  六、教学过程(这一部分是该教学设计方案的关键所在,在这一部分,要说明教学的环节及所需的资源支持、具体的活动及其设计意图以及那些需要特别说明的教师引导语)

  一. 创设问题情境:

  情境1:给出椭圆的一些实物图片:天体运行图(月亮绕地球,地球绕太阳旋转)、汽车油罐的横截面,立体几何中圆的直观图?

  实物:圆柱形杯倾斜后杯中水的形状。

  情境2:校园内一些椭圆形小花坛

  问题 学校准备在一块长3米、宽1米的矩形空地上建造一个椭圆形花园,要尽可能多地利用这块空地,请问:如何画这个花园的边界线?

  (学生现在还不能解决,只有通过今天这节课的学习才能解决这个问题)

  这是实际生活中图形,数学中我们也遇到这一类图形:归结为到两定点距离之和为定值的点的轨迹问题。如何用现有的工具画出图形?(启发学生用画圆的方法试着画图)

  教师与学生一起找出上述问题的解决方案,并一同用给的工具画出图形,与上述图形相似——椭圆

  问题情境的创设应有利于激发学生的求知欲。为了学习椭圆的定义,我设计如下两个学生熟悉的情境:

  通过情境1,让学生感受到椭圆的存在非常普遍。小到日常生活用品,大到建筑物的外形,天体的运行轨道。

  通过情境2,让学生主动思考如何画椭圆及椭圆的定义。

  通过问题,要求学生以小组为单位进行实验、观察、猜想,激发学生探索的欲望和浓厚的学习兴趣,使学生的主体地位得到体现。

  二. 探求椭圆方程

  如何选取坐标系?

  方案1:以一个定点为原点,两定点的连线为X轴

  回顾圆的方程的建立过程,首先是做什么? (提问学生) 如何选择适当的坐标系来建立椭圆的方程呢?

  学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法来解决问题,渗透数形结合的数学思想。

  方案2:以两定点的连线为X轴,其垂直平分线为Y轴

  学生可能有很多种建系方法,根据课堂的实际情况进行处理。不能否定学生的方法,让学生自己讨论那种建系方法更为合适,我想学生通过这些活动能够建立几种常见的坐标系,并列出相应的代数方程。我认为这样有利于培养学生的动手实验,分析比较,相互协作等能力。让学生体验到知识的产生过程。

  三. 标准方程比较

  (让学生讨论,归的标准方程有何异同) (1)相同点纳出这两种形式的标准方程有何异同)

  (1)相同点

  ①方程中x,y表示椭圆上任意一点 ②关于x,y的二元二次方程;

  ③焦点位置的判定:焦点在较大分坐标;

  (2)不同点

  ①方程形式 ②图形 ③焦点坐标

  由于化简两个根式的方程的方法特殊,难度较大,估计学生容易想到直接平方,这时可让学生预测这样化简的难度,从而确定移项平方可以简化计算。为此,我首先启发学生如何去掉根号较好,让学生动手比较,最后得出移项平方化简方程比较简单,这样有利于培养学生的分析比较能力。

  七、教学评价设计(创建量规,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价)

  椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力

  八、板书设计(本节课的主板书)

  一.定义

  二. 标准方程比较

  1)相同点 ①方程中x,y表示椭圆上任意一点的坐标; ②关于x,y的二元二次方程; ③焦点位置的判定:焦点在较大分母对应的变量的坐标轴上

  2)不同点 ①方程形式 ②图形 ③焦点坐标

  九.教学反思

  椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

  椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

  椭圆方程教案 篇4

  教学目标:

  1、通过本节课课前及课堂上的探索研究过程,使学生理解椭圆的定义,掌握椭圆的标准方程;

  2、复习和巩固求轨迹方程的基本方法.

  3、能够理解椭圆轨迹和方程之间的关系,进一步提高学生解析能力;

  教学重点:

  1、椭圆的定义和椭圆的标准方程及其求法,

  2、椭圆曲线和方程之间的相互关系.

  教学难点:

  1、建立适当的坐标系,求椭圆标准方程.

  2、利用椭圆的定义和标准方程研究曲线.

  教学方式:体验式

  教学手段:多媒体演示.

  学生特点:本节课的教学对象为高中实验班学生,数学基础较好.

  教学过程:

  1、给出椭圆定义

  由学生根据课前的预习叙述椭圆的定义:

  1)椭圆的定义:

  平面内与两定点F1,F2的距离的和等于常数(大于 )的点的轨迹(或集合)叫做椭圆.F1, F2叫做椭圆的焦点; 叫做椭圆的焦距.

  2)展示学生通过预习椭圆知识,结合椭圆的知识所作的“图形”,并介绍椭圆的做法,帮助同学了解椭圆的定义,同时引出椭圆标准方程

  2、推导椭圆标准方程

  推导方程:(以下方程推导过程由学生完成)

  ①建系:以 和 所在直线为 轴,线段 的中点为原点建立直角坐标系;

  ②设点:设 是椭圆上任意一点,设 ,则

  ③列式:由 得

  ④化简:移项平方后得

  整理得

  两边平方后整理得,

  由椭圆的定义知, 即 ,∴ ,令 ,其中 ,代入上式,得 ,两边除以 ,得: ( ))

  3.进一步认识椭圆标准方程

  (掌握椭圆的标准方程,以及两种标准方程的区分)

  (1)方程 ( )叫做椭圆的标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  (2)方程方程 ( )也是椭圆的`标准方程.它表示焦点在 轴上,焦点坐标为 , ,其中 .

  4.通过例题巩固椭圆的标准方程.

  例1 求适合下列条件的椭圆的标准方程:

  (1) 两个焦点的坐标分别是(-3,0),(3,0),椭圆上任意一点与两焦点的距离的和等于8;

  (2) 两个焦点的坐标分别是(0,-4),(0,4),并且椭圆经过点 .

  5.再次展示学生所作椭圆,让学生利用椭圆方程和椭圆定义来判断所作的“椭圆”,并说明判断的依据,进一步椭圆定义和椭圆的标准方程.

  6.小结:

  这节课我们围绕椭圆及其标准方程研究了椭圆这几个方面的问题:

  (1)椭圆的定义;

  (2)椭圆的标准方程推导;

  (3)利用椭圆的定义和标准方程研究曲线;

  7.作业:

  (1)P42,练习A第1,2,3,4题; (2)求演示图形5中椭圆的方程.

  椭圆方程教案 篇5

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.

  教学重点:椭圆的定义和椭圆的标准方程.

  教学难点:椭圆标准方程的推导.

  教学方法:探究式教学法,即教师通过问题诱导启发讨论探索结果,引导学生直观观察归纳抽象总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.

  教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.

  教学过程

  (一)设置情景,引出课题:

  1.对椭圆的感性认识.通过演示课前老师和学生共同准备的有关椭圆的实

  物和图片,让学生从感性上认识椭圆.

  2.通过动画设计,展示椭圆的形成过程,使学生认识到椭圆是点按一定规律运动的轨迹。

  提问:点M运动时,F1、F2移动了吗?点M按照什么条件运动形成的.轨迹是椭圆?

  下面请同学们在绘图板上作图,思考绘图板上提出的问题:

  1.在作图时,视笔尖为动点,两个图钉为定点,动点到两定点距离之和符合什么条件?其轨迹如何?

  2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗?

  3.当绳长小于两图钉之间的距离时,还能画出图形吗?

  (二)研讨探究,推导方程

  1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

  椭圆方程教案 篇6

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1、教学重点:椭圆的定义及其标准方程

  2、教学难点:椭圆标准方程的推导

  (三)三维目标

  1、知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2、过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。

  3、情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1、创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2、画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3、教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4、椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5、推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6、例题讲解:通过例题规范学生的解题过程。

  7、巩固练习:以多种题型巩固本节课的教学内容。

  8、归纳小结:通过小结,使学生对所学的知识有一个完整的'体系,突出重点,抓住关键,培养学生的概括能力。

  9、课后作业:面对不同层次的学生,设计了必做题与选做题。

  10、板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

  椭圆方程教案 篇7

  教学目标

  1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

  2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

  3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

  4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

  5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

  教学建议

  教材分析

  1. 知识结构

  2.重点难点分析

  重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

  椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

  (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

  另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

  (2)根据椭圆的定义求标准方程,应注意下面几点:

  ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

  ②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

  ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

  ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

  (3)两种标准方程的椭圆异同点

  中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

  椭圆的焦点在 轴上 标准方程中 项的分母较大;

  椭圆的焦点在 轴上 标准方程中 项的分母较大.

  另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .

  (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

  教法建议

  (1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

  为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

  例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

  (2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

  为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的认识.

  (3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

  教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

  教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

  (4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

  在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

  (5)注意椭圆的定义与椭圆的标准方程的联系

  在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的.对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

  (6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

  推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

  (7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

  (8)在学习新知识的基础上要巩固旧知识

  椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

  (9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

  椭圆方程教案 篇8

  椭圆是二维平面上的一种几何形状,其形状近似于一个扁圆的球。其特点是有两个焦点,所有点到这两个焦点距离之和相等。椭圆的标准方程可以通过焦点和长轴长度来确定。在本篇文章中,我们将重点介绍椭圆的标准方程及其相关的性质和应用。

  一、椭圆的标准方程

  椭圆的标准方程有两种形式,一种是普通形式,另一种是中心形式。我们先来看看椭圆的普通形式:

  $displaystylefrac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$

  其中,(h,k)表示椭圆的中心坐标,a是长轴的长度,b是短轴的长度。从上式中可以看出,椭圆是对称的,其中心点位于(x,y)平面上。

  椭圆的中心形式为:

  $displaystylefrac{(x-h)^2}{a^2}+frac{(y-k)^2}{b^2}=1$

  其中(h,k)为椭圆的中心点坐标,a是长轴的长度,b是短轴的长度。从中心形式可以看出,椭圆的中心这个重要的点可以直接读出,并且坐标为(h,k)。

  二、椭圆的性质

  1、椭圆的离心率

  椭圆的离心率定义为焦距与长轴的比值,即:

  $displaystyle e=frac{c}{a}$

  其中,c表示两个焦点之间的距离。对于任何一个椭圆,离心率必须满足0≤e

  2、椭圆的焦点坐标

  椭圆有两个焦点,其坐标可以通过下面的公式计算:

  $(h±ae,k)$

  其中,(h,k)表示椭圆的中心点坐标,a是长轴的长度,e是椭圆的离心率。

  3、椭圆的面积

  椭圆的'面积可以通过下面的公式计算:

  $S=πab$

  其中a是长轴的长度,b是短轴的长度。

  三、椭圆的应用

  1、轨道运动

  椭圆是天体广泛运动的形状之一,例如人造卫星、行星、彗星等都沿着椭圆轨道运行。科学家们通过对椭圆轨道的模拟和分析,可以计算出行星、卫星等天体的运动情况,进而掌握它们的位置和运动状态。

  2、建筑设计

  椭圆是一种非常常见的建筑设计元素。例如,椭圆形的穹顶可以为建筑物提供更好的稳定性和抗震能力。椭圆形的立柱也能更好地承受建筑物的重量。椭圆形的窗户则提供了更大的采光面积,让人们感受到更加宽敞和明亮。

  3、医疗图像处理

  椭圆也具有实用价值。例如,医学图像处理中,医生们可以利用椭圆轮廓测量器测量肿瘤的形状、尺寸等信息,从而对病情进行更准确的评估和治疗。

  总之,椭圆是一个重要的二维图形,具有广泛的应用和实用价值。通过椭圆的标准方程和性质,我们可以更好地理解椭圆,并且将它应用到实际生活和工作中。

  椭圆方程教案 篇9

  椭圆的标准方程是高中数学中的一个重要的知识点,它涉及到二次函数的图像、性质与应用,是学习解析几何、高等数学等学科的基础知识。本篇文章将以椭圆的标准方程为主题,介绍其相关知识及其应用。

  一、椭圆的定义与性质

  椭圆可以由一个点(称为焦点)和一条线段(称为直线段或线段面)所确定。椭圆上的每个点到两个焦点的距离之和等于定长(称为椭圆的长轴),而且椭圆上任意两点到两个焦点距离之和的差等于定长(称为椭圆的短轴)。此外,椭圆还有以下性质:

  1. 长轴与短轴相交于椭圆的中心,中心对称于两个焦点。

  2. 椭圆的两个焦点之间的距离等于椭圆的.长轴长。

  3. 椭圆的离心率等于焦点距离之差与焦点距离之和的比值,且小于1。

  二、椭圆的标准方程

  对于椭圆,我们可以通过椭圆的中心坐标、长轴长与短轴长来确定一个标准方程。其标准方程分为两种情况:

  1. 椭圆的长轴与x轴平行:

  $(frac{x-x_0}{a})^2+(frac{y-y_0}{b})^2=1$;

  其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

  2. 椭圆的长轴与y轴平行:

  $(frac{x-x_0}{b})^2+(frac{y-y_0}{a})^2=1$;

  其中,($x_0$,$y_0$)为中心坐标,a为长轴的一半,b为短轴的一半。

  三、椭圆的应用

  椭圆在生活中具有广泛的应用,以下是其中几个典型的应用:

  1. 工程制图中,椭圆常用来表示任意比例的圆或球体的不同截面。

  2. 精密仪器的设计中,椭圆常用来代替圆形,以便更精确地记录测量值。

  3. 卫星轨道、性能分析以及卫星与地球之间的通信频率计算等,都需要用到椭圆。

  4. 摄影领域中的像面就是个椭圆,而焦平面是一个凸圆,所以焦平面上的像点分布成一个椭圆,并且其中心即为透镜的中心,短轴、长轴、离心率等数据也可以从椭圆标准方程中获取。

  四、结语

  本文简单介绍了椭圆的标准方程、定义及性质,以及椭圆在生活中的应用,希望能够对您的学习与工作有所帮助。在学习过程中,可以多做一些练习来加深对椭圆的理解,也可以在应用方面大胆尝试,将所学应用到实际中去,以此来提高自己的理论与实践水平。

  椭圆方程教案 篇10

  教学目标:

  (一)知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程。

  (二)能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力。

  (三)情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神。

  教学重点:

  椭圆的定义和椭圆的`标准方程。

  教学难点:

  椭圆标准方程的推导。

  教学方法:

  探究式教学法,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。

  教具准备:

  多媒体课件和自制教具:绘图板、图钉、细绳。

  教学过程:

  (一)设置情景,引出课题

  问题:XX年10月12日上午9时,“神舟六号”载人飞船顺利升空,实现多人多天飞行,标志着我国航天事业又上了一个新台阶,请问:“神舟六号”飞船的运行轨道是什么?多媒体展示“神舟六号”运行轨道图片。

  (二)启发诱导,推陈出新

  复习旧知识:圆的定义是什么?圆的标准方程是什么形式?

  提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式? 各组分别选定一种方案:(以下过程按照第一种方案)

  ①建系:以所在直线为x轴,以线段的垂直平分线为y轴,建立直角坐标系。

  ②设点:设是椭圆上任意一点,为了使的坐标简单及化简过程不那么繁杂,设,则设与两定点的距离的和等于。

  ③列式

  ④化简:(这里,教师为突破难点,进行设问:我们怎么化简带根式的式子?对于本式是直接平方好还是整理后再平方好呢?)