四年级数学教案:小数的意义复习

时间:2024-04-11 07:00:45 教案 我要投稿
  • 相关推荐

四年级数学教案:小数的意义复习

  作为一名教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!以下是小编精心整理的四年级数学教案:小数的意义复习,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级数学教案:小数的意义复习

四年级数学教案:小数的意义复习1

  教学目标:

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (三)培养学生的观察、分析、推理能力。

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,......的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点。

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示。

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(-)元=()元

  (2)3角=(-)元=()元

  (3)9分=(-)元=()元

  3.把一条线段平均分成10份,1份是这条线段的,平均分成100份,l份是这条线段。

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数。(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外。在量屋子的高度时,它不够整米时,以米作单位也常用小数表示。

  2.教学小数的意义。

  (1)利用旧知识继续研究。

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1元的1/10,用小数表示是0.1元,1/10元与0.1元是不同的形式,表示的是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  思考:1分钱是1元的几分之几?(1/100)用小数表示是多少?(0.01)。

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几......都可用小数表示?

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺。提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是1/10米,写成小数是0.1米。1要写在小数点右面第一位。

  3分米是多少米?用分数、小数怎样表示?

  学生类推出:3分米是3/10米,还可以写成0.3米。

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示。

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把l米平均分成100份,l份是1厘米,写成分数是1/100米,写成小数是0.01米,l要写在小数点右面第二位。

  怎样把7厘米写成以米作单位的分数和小数?

  学生推理得出:7厘米是7/100米,还可写成0.07米。

  启发学生想:15厘米怎样写成以米作单位的分数和小数?

  经小组议论后,学生得出:15厘米是15个1/100米就是15/100米,5个1/100就在小数点右面第二位写5,还有10个1/100,够1个1/10,就在小数右面第一位写1。所以15厘米是0.15米。

  明确把1米平均分成100份,一份或几份都可以用两位小数表示。

  ②把1米平均分成1000份,l份在尺子上是多少?(1毫米)

  l毫米是几分之几米?(1/1000米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001。

  9毫米、63毫米以米作单位写成小数分别是多少米?

  启发学生根据上边的推理得出:9毫米是9/1000米,还可写成0.009米,63毫米是0.063米。

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位......小数。

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成1000份,1份或几份可以用三位小数表示......)

  (3)启发学生概括小数的`意义。

  启发性提问:

  ①上面例子都是把l米平均分成多少份?(10份,100份,10加份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之儿,千分之几);

  ③这些分数的分数单位分别是多少?(1/10,1/100,1/1000)

  ④每相邻的两个单位间的进率是多少?如1/10米有几个1/100米?(10个)

  1/100米里有几个1/1000(10个)

  所以相邻两个单位间的进率也是lo。

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。

  小数的计数单位是十分之一、百分之一、千分之一......,分别写作0.1,0.01,0.001;等。

  阅读课本295页结论。

  反馈:95页“做一做”。

  订正时说明意义,计数单位。

  (4)强化概念。

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题。·

  2.填空(投影)。

  用分数表示用小数表示

  7分米米米

  7厘米米米

  7毫米米米

  3.判断下面各题是否正确?为什么?

  9/100=0.94毫米=0.04米

  75/1000=0.0755厘米=0.5米

  (四)作业

  练习二十第1-3题。

  板书设计:

  小数的意义

  1米=10分米一位小数表示十分之儿,计数单位是

  =100厘米0.1

  =1000毫米两位小数表示百分之几,计数单位是

  把1米平均分成10份,每份长1分米。0.01

  1分米=1/10米=0.1米三位小数表示千分之几,计算单位是

  把l米平均分成100份,每份长1厘米。0.001

  1厘米=i米=0.01米相邻两个计数单位间的进率都是10。

  15厘米=15/100米=0.15米

  把1米平均分成1000份,每份长1毫米。

  1毫米=1/1000米=0.001米

  63毫米=63/1000米=0.063米

四年级数学教案:小数的意义复习2

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:通过整理和练习,巩固本单元知识。

  教学难点:通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的.学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  374650285750小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  742950228600意义和读写

  意义和读写

  板书(部分):

  63500057150

  742950114300性质和大小比较

  性质和大小比较

  74295025400小数点的移动规律

  小数点的移动规律

  768350273050单位换算

  单位换算

  768350203200近似数

  近似数

  教学反思:

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。

《四年级数学教案:小数的意义复习.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

【四年级数学教案:小数的意义复习】相关文章:

小数的意义数学教案02-23

小数的意义教案02-21

《小数的意义》教案08-12

小数的意义教案03-31

《小数的意义》教学反思03-09

小数的意义的教学反思02-14

小数的意义教学反思09-25

小数的意义教案(15篇)03-06

小数的意义教案 15篇02-21

小数的意义教案15篇02-22

四年级数学教案:小数的意义复习

  作为一名教师,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。来参考自己需要的教案吧!以下是小编精心整理的四年级数学教案:小数的意义复习,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级数学教案:小数的意义复习

四年级数学教案:小数的意义复习1

  教学目标:

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (三)培养学生的观察、分析、推理能力。

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,......的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点。

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示。

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(-)元=()元

  (2)3角=(-)元=()元

  (3)9分=(-)元=()元

  3.把一条线段平均分成10份,1份是这条线段的,平均分成100份,l份是这条线段。

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数。(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外。在量屋子的高度时,它不够整米时,以米作单位也常用小数表示。

  2.教学小数的意义。

  (1)利用旧知识继续研究。

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1元的1/10,用小数表示是0.1元,1/10元与0.1元是不同的形式,表示的是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  思考:1分钱是1元的几分之几?(1/100)用小数表示是多少?(0.01)。

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几......都可用小数表示?

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺。提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是1/10米,写成小数是0.1米。1要写在小数点右面第一位。

  3分米是多少米?用分数、小数怎样表示?

  学生类推出:3分米是3/10米,还可以写成0.3米。

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示。

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把l米平均分成100份,l份是1厘米,写成分数是1/100米,写成小数是0.01米,l要写在小数点右面第二位。

  怎样把7厘米写成以米作单位的分数和小数?

  学生推理得出:7厘米是7/100米,还可写成0.07米。

  启发学生想:15厘米怎样写成以米作单位的分数和小数?

  经小组议论后,学生得出:15厘米是15个1/100米就是15/100米,5个1/100就在小数点右面第二位写5,还有10个1/100,够1个1/10,就在小数右面第一位写1。所以15厘米是0.15米。

  明确把1米平均分成100份,一份或几份都可以用两位小数表示。

  ②把1米平均分成1000份,l份在尺子上是多少?(1毫米)

  l毫米是几分之几米?(1/1000米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001。

  9毫米、63毫米以米作单位写成小数分别是多少米?

  启发学生根据上边的推理得出:9毫米是9/1000米,还可写成0.009米,63毫米是0.063米。

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位......小数。

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成1000份,1份或几份可以用三位小数表示......)

  (3)启发学生概括小数的`意义。

  启发性提问:

  ①上面例子都是把l米平均分成多少份?(10份,100份,10加份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之儿,千分之几);

  ③这些分数的分数单位分别是多少?(1/10,1/100,1/1000)

  ④每相邻的两个单位间的进率是多少?如1/10米有几个1/100米?(10个)

  1/100米里有几个1/1000(10个)

  所以相邻两个单位间的进率也是lo。

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。

  小数的计数单位是十分之一、百分之一、千分之一......,分别写作0.1,0.01,0.001;等。

  阅读课本295页结论。

  反馈:95页“做一做”。

  订正时说明意义,计数单位。

  (4)强化概念。

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题。·

  2.填空(投影)。

  用分数表示用小数表示

  7分米米米

  7厘米米米

  7毫米米米

  3.判断下面各题是否正确?为什么?

  9/100=0.94毫米=0.04米

  75/1000=0.0755厘米=0.5米

  (四)作业

  练习二十第1-3题。

  板书设计:

  小数的意义

  1米=10分米一位小数表示十分之儿,计数单位是

  =100厘米0.1

  =1000毫米两位小数表示百分之几,计数单位是

  把1米平均分成10份,每份长1分米。0.01

  1分米=1/10米=0.1米三位小数表示千分之几,计算单位是

  把l米平均分成100份,每份长1厘米。0.001

  1厘米=i米=0.01米相邻两个计数单位间的进率都是10。

  15厘米=15/100米=0.15米

  把1米平均分成1000份,每份长1毫米。

  1毫米=1/1000米=0.001米

  63毫米=63/1000米=0.063米

四年级数学教案:小数的意义复习2

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:通过整理和练习,巩固本单元知识。

  教学难点:通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的.学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的大小比较跟整数的大小比较有什么相同的地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  374650285750小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  742950228600意义和读写

  意义和读写

  板书(部分):

  63500057150

  742950114300性质和大小比较

  性质和大小比较

  74295025400小数点的移动规律

  小数点的移动规律

  768350273050单位换算

  单位换算

  768350203200近似数

  近似数

  教学反思:

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。