数学广角数与形教案

时间:2023-11-15 06:57:46 教案 我要投稿
  • 相关推荐

数学广角数与形教案

  作为一名默默奉献的教育工作者,时常要开展教案准备工作,教案是教学蓝图,可以有效提高教学效率。那么什么样的教案才是好的呢?下面是小编精心整理的数学广角数与形教案,仅供参考,欢迎大家阅读。

数学广角数与形教案

数学广角数与形教案1

  1、主要内容

  (1)排列、组合

  (2)简单的推理

  2、地位于作用

  排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。

  有关逻辑推理知识也是人们在生活和研究中很重要的知识。在解决问题的过程中,使学生进行简单、有条理的.思考。教材在渗透数学思想方面做一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、试验、猜测等直观手段解决这些问题。并初步培养学生有顺序地、全面地思考问题的意识。

  单元教学目标

  1、使学生通过观察、猜测、试验等活动,找出最简单的事物的排列数和组合数。

  2、培养学生初步的观察、分析及推理能力。

  3、单元重点与难点

  教学重点:

  经历探索简单事物排列与组合规律的过程。经历简单推理的经过。

  教学难点:

  初步理解简单事物排列、组合的不同。推理依据的叙述。

  本单元主要教学与设计

  1、教具利用:

  投影仪、动物卡片、

  各种教科书等。

  2、主要方法:

  (1)首先通过有趣的故事导入,激起学生的学习兴趣。

  (2)通过生动有趣的活动,让学生通过这些活动进行学习。

  (3)结合具体例子,让学生动手去做,动脑趋想。

  (4)创设真实情景,更加贴近学生生活实际,便于学生理解掌握。

  分课时教学目标

  第一课时:

  1、教师为学生创设观察、猜测、实验的情境,找出最简单的事物排列数和组合数。

  2、培养学生初步的观察、分析及推理能力。

  3、培养学生有顺序地、全面的思考问题的意识。

  第二课时:

  1、通过活动让学生感受简单推理的过程,培养学生的推理能力。

  2、培养学生的合作意识和创新精神。

  分课时重点与难点

  第一课时:

  经历探索简单事物排列与组合规律的过程是重点。

  初步了解简单事物排列与组合的不同时难点。

  第二课时:

  经历简单推理的过程是重点。

  推理依据的叙述是难点。

  分课时作业布置

  第一课时:

  练习二十三1、2题

  第二课时:

  练习二十三3、4题

数学广角数与形教案2

  教学目标:

  1、了解鸡兔同笼问题,掌握用列表法、假设法的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  2、让学生在自主探索、尝试、合作学习的过程中,经历用不同方法解决鸡兔同笼问题的过程,使学生体会用方程解鸡兔同笼问题的一般性。

  3、了解我国古人解鸡兔同笼问题的方法,感受其趣味性。

  教学重点:

  尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

  教学难点:

  在解决问题的过程中,培养学生的.逻辑思维能力。

  教法:分析、引导

  学法:自主探究

  课前准备:多媒体。

  教学过程:

  一、定向导学:2分钟

  1、师:同学们,你们知道吗,大约在1500年前,我国古代的数学名著《孙子算经》中,记载着一道有趣的数学题:(课件出示,题略)你们知道这道题的意思吗?

  生:……(课件演示)

  师:这就是有趣的“鸡兔同笼”问题。(板书课题)今天我们就一起研究这一问题。

  2、学习目标:

  掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  二、自主探究:8分钟

数学广角数与形教案3

  教材分析:

  我执教的内容是人教版小学数学四年级下册第八单元数学广角中的例1。本单元主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。

  例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自己喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。

  设计理念:

  本节课主要是让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。因此,我这样设计:创设情境从学生身边事,引起学生兴趣;自主探索,构建数学模型;拓展应用,培养应用意识。为此,本课制定了三个教学目标:

  1.通过探究发现一条线段上两端要种的植树问题的规律。

  2.学生经历和体验“复杂问题简单化”的解题策略和方法。

  3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:

  引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。

  教学难点:

  把现实生活中类似的问题同化为“植树问题”,并运用植树问题的思想方法解决这些实际问题。

  说教法:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了一次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间的关系的认识与理解。

  1、关注学习起点。

  学生是数学学习的.主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。在教学中,我选取生活中的学生熟悉的事例,在教师的引导中让学生探究,建立知识表象,使学生得到启迪,悟到方法。把学生的主动权交给学生,让课堂真正成为学生学习的舞台。

  2、体验生活数学。

  “数学来源于生活,而又应该为生活服务。”在学生已经发现两端要种的植树问题的规律后,我开放课堂时空,让学生从车站站点、上楼等问题,并通过课件让学生直观地认识生活中的许多事例看上去跟植树问题毫不相似,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,引导学生要灵活运用所学知识来解决生活中的一些实际问题。使学生充分感受到数学知识来源于生活,又回归于生活。

  此外,我还进一步拓展了教学目标,在画图求解的过程中,让学生觉得这样画到100米麻烦,产生另辟蹊径的念头,使学生体验“复杂问题简单化”的解题过程。

  说学法:本节课学生主要采用动手操作、合作交流的方法进行学习。

  说教学流程:本节课我分四个流程进行教学推进。

  一、广告导入,感知“间隔”的含义

  二、引导探究,发现“两端要种”的规律

  1.创设情境,提出问题。

  通过在小路植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在思考的过程中发现了三种不同的方法,到底哪一种方法好呢?引导学生通过画图实际种一种去检验。通过模拟种树,使学生体验到一棵一棵种到100米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。

  2.简单验证,发现规律。

  通过前面的广告、斑马线等图,学生对棵树和段数的关系已有了一定的感性认识,再经过学生实际操作,为学生顺利发现并总结规律打下了基础。

  三、通过儿歌的形式归纳规律。

  这样一方面巩固刚发现的规律,另一方面使学生认识到植树问题的规律不仅仅能解决植树的问题,还能解决生活中很多类似的问题。

  四、回归生活,应用规律。

  多角度的应用练习巩固和拓展学生对植树问题的认识。

  教学反思

  反思整个教学过程,我认为这节课有以下几个特点:

  一、创设浅显易懂的生活原型,让数学走近生活。

  创设与学生的生活环境和知识背景密切相关的,学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。

  二、注重学生的自主探索,体验探究之乐。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。

  三、利用学生资源,加强生生合作

  学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。

  四、回归生活,应用规律。

  多角度的应用练习巩固和拓展学生对植树问题的认识。

  如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我也注重对数形结合意识的渗透。

  本节课还有许多的不足之处,能够与在座这么多的老师共同学习、交流,是一次难得的机会,希望在座的老师能多给我提一些宝贵的意见,帮助我成长。

数学广角数与形教案4

  第八单元数学广角-数与形(教案)

  【教学目标】

  知识技能

  1.重视“数”“形”之间的联系,找到解题规律。

  2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。 过程与方法:

  1.借助“数”“形”之间的关系,解决相关问题。

  2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

  情感态度价值观:

  在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

  【教学重难点】

  重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。

  【教具准备】

  教具:正方形块 ,课件。

  学具:完全相同的小正方形纸卡若干

  【教学过程】

  一、激趣导入

  师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?

  生:想、、、、、、

  师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助、、、、、、(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)

  二、探究新知

  1.教学例1。

  (1)出示例题。

  2 2 1=(1)

  1+3=(2) 1+3+7=(3) 2

  (以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子 1 2

  说:“考考你,你算算我有多大?”数上下(转 载于:wWW.cSsYq.cOM 书业网:8单元数学广角数与形)打量了一下形:“哼!!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的`面积是1+3=4,4是2的平方。”

  师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。

  (2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。 ①排列图形、观察、讨论。

  仔细观察,看一看上面的图形和算式左边有什么关系?

  ②汇报发现。

  发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;

  发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。

  发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。

  [算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]

  发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。

  三、应用知识。

  1. 你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆) 2 ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2 ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )

  ③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )

  2. 请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+5+3+1 =() 5 2

  3.请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+9+11+13+11+9+7+5+3+1=( )85

数学广角数与形教案5

  数学广角

  【新知识点】

  利用天平找出5件物品中的1件次品

  数学广角

  利用天平找出多件物品中的1件次品

  【教学要求】

  1.通过观察、猜想、实验、推理等活动,体会解决问题战略的多样性和运用优化的方法解决问题的有效性。

  2.感受数学在日常生活中的.广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养同学的应用意识和解决实际问题的能力。

  【教学建议】

  1.加强同学的试验、操作活动。

  本单元内容的活动性和操作性比较强,大都可以采取同学动手实践、小组讨论、探究的方式教学。实际教学时,可先多给同学一些时间,让他们充沛地操作、实验、讨论、研究,找到解决问题的多种战略。

  2.重视培养同学的猜想、推理能力和探索精神。

  组织同学进行实验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜想、归纳、推理活动,由此促进同学养成勤于考虑、勇于探索的精神。操作活动中,同学往往会得出多种解题战略。教学时,老师应引导同学从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决战略。

数学广角数与形教案6

  时间:5分钟

  方法:边看书边完成下面要求:

  1、“鸡兔同笼”这四个字是什么意思?

  2、书上用了()种方法来解决这个问题。

  3、我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些信息?

  生理解:

  (1)鸡和兔共8只;

  (2)鸡和兔共有26只脚;

  (3)鸡有2只脚;

  (4)兔有4只脚;

  (5)兔比鸡多2只脚。(课件演示)

  师:那问题是什么?

  生:鸡和兔各有多少只?

  3、猜一猜:

  师:请同学们猜一猜鸡和兔可能各有多少只?(学生猜测)还有其它的猜测吗?

  4、介绍列表法:

  师:你们猜出的结果鸡和兔的总只数都是8只,但是你们猜想的结果都正确吗?到底哪个是正确的呢?下面请同学们把你们的猜想整理到这张表格中,并进行调整,看看哪个结果才是共有26只脚。(学生活动)

  学生汇报整理后的表格,教师板书学生整理后的'表格。(边板书,边理解填表过程)

  鸡

  兔

  脚

  5、观察发现,列式计算

  三、合作交流:5分钟

  假设全是兔,怎样解决?试一试。

  四、质疑探究:5分钟

  解决鸡兔同笼这类问题,有几种假设的方法?

  五、小结检测:20分钟

  1、小结方法:

  同学们真了不起,刚才我们在解决鸡兔同笼的问题时,用到了多种方法:列表法,假设法。

  2、检测:

  a、问答:

  (1)如果老师让你们解决《孙子算经》中的原题,你会选哪种方法解决呢?

  为什么不选择列表法?难?为什么难?(要列举的情况很多)有没有好的办法?(有没有不用列举那么多就能找到答案呢)

  (2)如果一定要你用列表法解答你有什么办法?学生讨论。(教师引导列表折半调整。)

  (注:如果前面出现了折半列表,就把这个环节提前讲。)

  (3)其实在我们生活当中类似于鸡兔同笼的问题有很多的,这些问题都可以用不同的方法去解决,下面请同学们用自己喜欢的方法做一些题目?

  b、解决问题

  (1)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?

  (2)全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

  (3)新星小学”环保卫士”小分队12人参加植树活动。男同学每人栽了3棵树,女同学每人栽了2棵树,一共栽了32棵树。男女同学各几人?

  作业:p106;1、2、3。

  板书:

  鸡兔同笼

  假设全是鸡,就有脚8×2=16(只)

  比实际少26—16=10(只)

  一只鸡比一只兔少4—2=2(只)

  兔子:10÷2=5(只)

  鸡:8—5=3(只)

数学广角数与形教案7

  教材分析:

  "鸡兔同笼"问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排“鸡兔同笼”问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

  “鸡兔同笼”的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。

  解决“鸡兔同笼”问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。

  配合“鸡兔同笼”问题,教材在“做一做”和练习中安排了类似的一些习题,比如“龟鹤”问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用“假设法”或方程的方法来解决这类问题。

  三维目标:

  1、知识与技能

  (1)、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

  (2)、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

  2、过程与方法

  解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。

  3、情感、态度与价值观

  (1)、培养学生的逻辑推理能力。

  (2)让学生体会到数学问题在日常生活中的应用。

  重难点、关键:

  1、重难点

  尝试用不同的方法解决“鸡兔同笼”问题。

  2、关键

  在解决问题的过程中培养学生的逻辑推理能力。

  教学设计:

  “鸡兔同笼”问题

  教学内容

  教科书第112-115页。

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决“鸡兔同笼”问题。

  3、通过本节课的学习,知道与“鸡兔同笼”有关的数学史,对学生进行数学文化的熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的.结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是8×2=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有10÷2=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)×4=26

  2x+8×4-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)×4=94

  2x+35×4-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  2×35=70(只)

  94-70=24(只)

  24÷(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  6×8=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10÷(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

数学广角数与形教案8

  (一)教学目标

  1、使学生通过自主研究发现图形中隐藏着的书的规侓,并会应用所发现的规侓。

  2、使学生会利用图型来解决一些有关的问题。

  3、使学生在解决数学问题的过程中,体会和掌握数形结合`、归纳推理、极限等基本的数学思想。

  (二)内容安排及其特点

  1、教学内容和作用。

  数形结合是一种非常重要的数学思想,把数与行结合起来解决问题可使复杂的问题变得更简单,使抽象的问题变得更直观。

  数与形相结合的例子在小学教材中比比皆是。有的时候,是图形中隐含着数的规侓,可利用数的规侓来解决图形的问题。有时候,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。尤其是小学生思维的抽象程度还不够高.经常需要借助直观模型来帮助理解。例如:利用长方形模型来教学乘法的算理,利用线段图来帮助学生理解分数除法的算理,利用面积模型来解释两位乘两位数的算理、乘法分配侓、完全平方公式等(如下图)。

  还有时候,数与形密不可分,可用“数”来解决“形”的问题,也可以用“形”来解决“数”的问题。例如:几何及微积分中曲线与方程、方程组及函数与图像互为工具互为解释,有机融合。小学中的正比例关系和反比比例关系图象也很好的反映了这样的思想。

  本单元中,教材以“1+3+5+7+……+(2n-1)=n2”“1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……=1”为例,引导学生认识和利用数学与形的结合,可以解决一些有趣的数学问题。

  具体编排结构如下:

  等差数列1,3,5,…之和与正方形数的关系 例1

  数与形

  求等比数列1/2,1/4,1/8,…之和例2

  从上表可以看出,本单元的教学内容分为两个层次。

  一是使学生通过数与形的对照,利用图形直观形象的特点表示出数的规律。例如,例1中,从图形的角度直观的理解“正方形数”和“平方数”的特点。

  二是借助图形解决一些比较抽象的、复杂的、不好解释的问题。例如,例2中,解决1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……的求和问题,教材利用分数意义的直观模型,使学生直观的理解“无限”的抽象概念;再如,练习二十二第6题,通过画示意图的方式可以比较便捷的解决比较抽象的问题。2、教材编排特点。

  本单元教材在编排上有下面几个特点。

  ⑴ 突出探索规律、应用规律的编排意图。不管是数还是形,都突出对其规律的探索。例如,通过观察和计算1、1+3、1+3+5、1+3+5+7+…既能发现加数的规律(从1开始的连续奇数的相加),又能发现和的规律(都是连续的正方形数);通过观察和计算1/2+1/4、1/2+1/4+1/8、1/2+1/4+1/8+1/16,…同样,既能发现加数的规律,又能发现和的规律。在发现规律的基础上,通过推理,再引导学生把规律应用于一般的情形,解决问题。

  ⑵ 在利用数形解决问题的过程中积累基本的活动经验,培养基本的数学思想。例如,在例2中,让学生通过计算,发现和越来越趋向于1,感受什么叫“无限接近”。虽然无法一一穷举所得的结果,但可以利用观察到的规律进行“无穷无尽的”类推。使学生在这一过程中体会推理和极限的思想。

  (三)教学建议

  1、引导学生数形结合,相互印证。

  形的问题中包含数的规律,数的问题也可以用形来帮助解决,教学时,要让学生通过解决问题体会到数与形的这种完美结合。既可以从数的角度出发,让学生看看可以怎样用图形来表示数的规律,也可以让学生寻找图形中所包含的数的规律。通过数与形的对应关系,互相印证结果、感受数学的魅力。例如,在例1中可以先让学生计算1+3+5+…的得数,使学生发现得到的和都是“平方数”,再通过图形的规律理解“平方数”和“正方形数”的含义。也就是说,如果用1个小正方形、3个小正方形、5个小正方形……可以共同拼出一些大小不一的大正方形图。也可以有规律的呈现由小正方形拼成的大小不一的大正方形图,让学生看看前后两个大正方形图相差多少个小正方形,例如,边长是2的大正方形和边长是1大正方形,相差的是3个小正方形;边长是3的大正方形和边长是2大正方形,相差的.是5个小正方形……相差的小正方形数正好是“?”形中的小正方形数。因此,每个大正方形图中都隐藏着一个算式,即1+3+5+…+(2n-1)=n2。

  2、使学生感受到用形来解决数的有关问题的直观性与简捷性。

  图形的直观、形象的特点,决定了化数为形往往能够达到以简驭繁的目的。例如,例2中,用举例的方法求出等比数列的有限和,都不能证明无限多项相加的结果为1。但是如果用圆和线段的图形加以说明,学生则比较容易理解当一个数无限趋近于1时,其结果就是1.一个极其抽象的极限问题,由于用图形来解决,就变得十分直观和便捷了。

  3、引导学生从不同的角度探索数与形的通用模式。

  小学阶段,虽然不要求写出一个数列的通式,但可以通过数形结合的方法,利用图形的规律,从不同的角度,用自己的语言描述出数列的通用模式。例如,第109页第1题,根据例1的结论,很容易得到第n个图形中最外围的小正方形数为:(2n+1)2-(2n-1)2,也可以从结果看到第一个图最外圈有8个小正方形,第二个图最外圈有8×2个小正方形,第三个图最外圈有8*3个小正方形……通过推理,可知第n个图最外圈就有8×n个小正方形,每一次都是在前一个图的基础上增加8个小正方形。还可以引导学生进一步思考:每次多的这8个小正方形都是怎么来的?使学生观察到是由于每边增加2个小正方形所产生的。

数学广角数与形教案9

  教学目标:

  知识与技能

  1、通过观察、实验,使学生认识图形和相应的数字之间的联系。

  2、启发学生结合图形的变化规律发现相应的数字之间的联系。

  3、引导学生探索规律,发现规律,运用规律提高计算技能。

  过程与方法

  经历解决问题的相关过程,体验迁移类推的学习方法。

  情感态度与价值观

  感受数学在解决实际问题的`作用,培养学生热爱数学、乐学数学的情感,体验数学知识的应用价值。

  重点:

  引导学生理解图形和数字的对应关系,并结合图形的变化规律,发现相应的数字变化规律。

  难点:

  探索规律并验证规律。

  教学准备:

  课件,小正方形若干。

  教学过程:

  一、质疑导入

  出示算式:1+3+5+7+9+11+······+=(?)你能快速口报出结果吗?观察这道算式,这些加数都有什么特点?

  二、探究新知

  1、化繁为简初步探究(1)1+3=()1+3+5=()1+3+5+7=()算出结果。观察算式与结果,你有什么发现?

  (1、它们都是从1开始的连续奇数数列求和。

  2、它们的和是一个数的平方。)

  (2)像这样的算式会有什么奥妙呢?今天我们就借助小小的正方形来研究像这样的数列求和的奥妙(板书课题:数与形)

  教师演示1可以表示1个正方形,1+3可以用1个正方形和3个正方形拼成一个稍大的正方形,是几行几列呢?(2)数形结合在拼好的稍大正方形、较大正方形上涂一涂,分别找出加数1、3、5在图形上怎么表示?一个数涂一种颜色。

  (3)观察算式与图形,你发现了什么规律?同桌交流学生汇报。

  (规律:1、这样的数列求和:有几个加数就是几的平方。

  2、每多一个加数,图形上会增加一个“L”形。

  3、和是一个数的平方,这个数是组成正方形行与列小正方形的个数。(正方形边长))(4)利用规律完成练习1+3+5+7+9=1+3+5+7+9+11+13=()=9的平方11+9+7+5+3+1=3、深化规律,探究求和通式(1)引导;

  1+3=2的平方,结果中2的平方,这里的2与哪个加数更为紧密?(3+1)÷2=2(2)学生推出1+3+5=3的平方(5+1)÷2=34、独立验证求和通式1+3+5+7+9=1+3+5+7+9+11+13=三、深化练习1+3+5+7+9+11+······+=(?)

【数学广角数与形教案】相关文章:

《数学广角》教案04-06

《数学广角》教学反思10-22

大班数学认识多边形教案09-12

中班数学6以内的数教案11-04

小班数学水果数一数教案09-22

近似数教案02-27

数的分解教案11-06

小班数学认识三角形教案03-26

猜数游戏教案09-12

《数星星的孩子》教案03-08